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By J. PANDA

Modern Technologies Corporation, Middleburg Heights, OH 44130, USA and NASA Lewis
Research Center, Cleveland, OH 44135, USA

(Received 23 July 1996 and in revised form 12 December 1997)

The periodic oscillation of the shock waves in screeching, underexpanded, supersonic
jets, issuing from a choked, axisymmetric, nozzle at fully expanded Mach numbers
(M

j
) of 1.19 and 1±42, is studied experimentally and analytically. The experimental part

uses schlieren photography and a new shock detection technique which depends on a
recently observed phenomenon of laser light scattering by shock waves. A narrow laser
beam is traversed from point to point in the flow field and the appearance of the
scattered light is sensed by a photomultiplier tube (PMT). The time-averaged and
phase-averaged statistics of the PMT data provide significant insight into the shock
motion. It is found that the shocks move the most in the jet core and the least in the
shear layer. This is opposite to the intuitive expectation of a larger-amplitude shock
motion in the shear layer where organized vortices interact with the shock. The mode
of shock motion is the same as that of the emitted screech tone. The instantaneous
profiles of the first four shocks over an oscillation cycle were constructed through a
detailed phase averaged measurement. Such data show a splitting of each shock (except
for the first one) into two weaker ones through a ‘moving staircase-like ’ motion.
During a cycle of motion the downstream shock progressively fades away while a new
shock appears upstream. Spark schlieren photographs demonstrate that a periodic
convection of large organized vortices over the shock train results in the above
described behaviour. An analytical formulation is constructed to determine the self-
excitation of the jet column by the screech sound. The screech waves, while
propagating over the jet column, add a periodic pressure fluctuation to the ambient
level, which in turn perturbs the pressure distribution inside the jet. The oscillation
amplitude of the first shock predicted from this linear analysis shows reasonable
agreement with the measured data. Additional reasons for shock oscillation, such as a
periodic perturbation of the shock formation mechanism owing to the passage of the
organized structures, are also discussed.

1. Introduction

The flow field of incorrectly expanded jets is characterized by a train of shock waves,
which upon interacting with the jet turbulence, produce ‘shock-associated noise ’.
Under a special self-resonance condition, first outlined by Powell (1953), incorrectly
expanded jets emit very intense pure tones, known as screech. Owing to its primarily
upstream directivity, the intense screech tones are capable of causing structural damage
and fatigue failure of airplane components (Hay & Rose 1970; Seiner, Manning &
Ponton 1987). The ultimate motivation served by the current work is to provide a
knowledge base and a database which can be used along with computational methods
(Cain et al. 1995) to predict the frequency and amplitude of the screech tone.

Since the earlier work of Powell (1953) and Harper-Bourne & Fisher (1974), screech
(and in general ‘shock-associated noise ’) has been associated with the oscillation of the
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shock system formed inside a supersonic jet. Although a large amount of research
effort has been devoted to the measurement and analysis of the acoustic field, very little
is known about the oscillation of the shock cells. In a review article on jet noise, Seiner
(1984) expressed his surprise at the lack of information on shock motion, which is
necessary to model screech. This has delineated the goal for the present experimental
work. Currently, an experimental program is being undertaken at the NASA Lewis
Research Center to explore various aspects of screech noise. The present paper reports
the unsteady motion of various shocks measured using a new shock-detection
technique. An accompanying work that describes the acoustic field generated by the
identical jets can be found in Panda (1996).

The flow fields of underexpanded jets are not well understood. So far, the primary
sources of experimental data are schlieren photographs, and the analytical solutions
are available for linearized descriptions. The earliest analytical expression is the
Prandtl–Pack relation (Pack 1950). The success of the small perturbation, linearized
Euler’s equation solution, with the vortex sheet boundary condition, is primarily
limited to a reasonable prediction of shock-cell spacing. The vortex sheet model was
extended to predict shock-cell spacing in a non-circular jet by Tam (1988) and Morris,
Bhat & Chen (1989). Tam & Jackson (1985) solved an Orr–Sommerfield equation using
multiple-scale expansions and showed the propagation of various waveguide modes
forming expansion and compression fans that are trapped as shock cells. It should be
pointed out that the linearized models do not allow for any shock formation; the flow
field is composed of expansion and compression waves only. In reality, schlieren
photographs (see Johannesen 1957; Love et al. 1959) show that shock waves are
formed in an underexpanded jet. The linearized description is also used in the shock-
noise models of Howe & Ffowcs Williams (1978) and Tam (1972). Perhaps the need for
the linearization is a simplification of the nonlinear Euler’s equation, rather than
providing an exact description of the jet flow. The shock formation mechanism is the
subject of Pack (1948), where the flow fields of underexpanded jets are calculated by
the method of characteristics and the shock formation is explained as a merging
process of the compression waves. The wave structures inside a shock cell are quite
complex and for low levels of underexpansion weak shocks are formed. The shock
strength increases with an increase of the degree of underexpansion. Johannesen &
Meyer (1950) and Love et al. (1959) describe the same mechanism for the inception
of a shock.

From the noise generation point of view, the interest is in the unsteady shock motion
resulting from an interaction with the shear layer turbulence. The earlier analytical
model of homogeneous turbulence interacting with a single shock (Ribner 1969), and
the recent computations of single vortex and single shock interactions (Ellzey et al.
1995; Meadows & Caughey 1996), demonstrated the generation of vorticity, entropy
and sound waves as well as distortions of the shock surface. These results, however, are
not directly applicable to a jet flow field, where a train of shock waves interact with a
series of coherent vortices. In addition, a screeching jet represents a special situation
where the sound waves, created from the shock–turbulence interaction, propagate
along the outskirts of the jet boundary (Panda 1996). In effect, the pressure fluctuations
associated with the screech tone perturb the quiescent surrounding into which the jet
flows. An analytical calculation, based on the linear theory of shock formation, is
presented in this paper which shows the influence of this fluctuation in generating
disturbances in the jet column and contribution to the shock oscillation. Various other
interactions relating coherent vortical structures and the nonlinear shock formation
mechanism are qualitatively discussed.
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Experimentally, the oscillation of the shock waves at the screech frequency was
observed first by Lassiter & Hubbard (1954) through a shadowgraph image of a shock
cell. The shock-noise theory of Harper-Bourne & Fisher (1974) was based upon the
experimental observation that the shock oscillation is well correlated with the
broadband noise component. Westley & Woolley (1968a, b, 1970) are of particular
interest. Some features of shock oscillation, quantitatively measured in the present
work, have been qualitatively described through schlieren visualization in these
references.

The primary experimental tool, which has made the present investigation possible,
is an optical shock detection technique that depends on laser light scattering by shock
waves. The fundamental optical property of a shock wave, which is exploited in the
detection technique, has been observed recently (Panda 1995a, b ; Panda & Adamovsky
1995). A brief discussion of the optical property follows. When a narrow laser beam
is brought to a grazing incidence on a shock, scattered light is found to appear from
the point of interaction. The scattered light, when visualized on a screen, appears as a
long streak oriented normal to the shock surface. It disappears when the beam is
moved to any other location where there is no shock or when the beam pierces the
shock surface at a non-grazing incidence. The phenomenon is due to light diffraction
caused by a sudden jump in the refractive index across a shock. At a grazing incidence
a part of the beam propagates upstream of the shock (lower density, lower refractive
index) and the rest downstream (higher density, higher refractive index). The refractive
index difference produces an optical path difference between these two parts of the
beam, which ultimately results in wide-angle scattering. The intensity of the scattered
light is found to increase exponentially as the difference of fluid density (refractive
index) increases.

The central element of the shock detection technique is a narrow laser beam which
is moved from point to point in a flow field containing shocks, and the appearance of
the scattered light is sensed using a photomultiplier tube (PMT). The beam locations
which correspond to the non-zero PMT signal are the shock locations. Further details
of the shock detection technique will be given in the next section describing the
experimental set-up.

2. Experimental set-up

2.1. The optical de�ice

Figure 1(a) shows the optical set-up. A green (0±514 µm wavelength) laser beam,
separated from an Argon–ion laser and transmitted through a fibre optic system, is
used for the measurement. The 2 mm diameter laser beam coming out of the fibre optic
probe is focused to a 0±16 mm spot at the jet centreline and is allowed to cross the
shock-containing plume. On the other side of the jet there is a light-collecting and
measuring device which senses the scattered light. There is a beam stop and an aperture
stop just in front of the 60 mm diameter collecting lens. The diameter of the beam stop
is such that the main laser beam is blocked from entering the collecting optics, while
the wide-angle scattered light can be easily collected. For the present experiment, beam
stops of 19 mm and 12±5 mm diameters were used. The distance between the jet
centreline and the collecting lens is the focal length of the latter, 250 mm. The collecting
lens focuses this light to a 0±2 mm diameter pinhole which then passes it to a PMT. The
electrical output from the PMT is connected across a 50 ohm terminator. The voltage
drop across the terminator is proportional to the PMT current and, therefore, is an
indicator of the intensity of the collected light.
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F 1. (a) Schematic of the shock detection technique. (b) Signal from photomultiplier tube
when the laser beam touches the oscillating first shock in M

j
¯ 1±4 jet at r}D¯ 0.

The depth of field of the optical system is controlled by the f-number of the collecting
lens and the diameters of the beam stop, aperture stop and pinhole. For the present
combination, the collection efficiency is found to be reduced by 90% if the scattered
light appears³4 mm (³0±15 r}D) away from the focal plane.

The diameter of the beam stop is found to control the noise level of the PMT signal.
The random refractive index fluctuation caused by turbulence in the shear layer
produces weak scattering close to the beam. As the beam stop diameter is reduced,
more and more of this scattered light is collected which then appears as random noise
in the PMT signal. However, the noise level was two to three orders of magnitude lower
than the level produced by the intense scattering from the shock–laser interaction.

The complete optical set-up (fibre optic probe, beam stop and the collecting optics)
was mounted on a 3-axis traversing unit which allowed it to be moved along the
streamwise and the transverse directions within an accuracy of 0±025 mm. Under
normal circumstances light from the laser beam does not reach the PMT. However, if
the laser beam touches a shock surface in the focused plane, a part of the scattered light
is collected and sensed by the PMT which then produces a non-zero output. The
voltage signal from the PMT and all other voltage outputs from various measuring
devices were digitized using a sample-and-hold digital converter and then stored and
processed by a Microvax 3300 computer.

Figure 1(b) shows a time trace obtained from the PMT when the laser beam was
placed to just graze the first shock in an underexpanded jet of Mach number 1±4. The
shock was unsteady and was oscillating at the screech frequency of about 5±5 kHz. The
nearly periodic negative spikes at this frequency indicate that the scattered light
appears and disappears periodically as the oscillating shock intercepts the laser beam.
The availability of an electrical signal, similar to that of figure 1(b), which is indicative
of a shock surface grazing the laser path is the basis of the detection technique.
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2.2. Facility and test conditions

The present experiments were conducted in a free air jet facility at the NASA Lewis
Research Center (Panda 1996). A 25±4 mm diameter (D) axisymmetric, convergent
nozzle is used to produce underexpanded supersonic jets, which, if fully expanded
would have Mach numbers (M

j
) in the range from 1±1 to 1±65. The Mach number range

was achieved by changing the supply pressure to the plenum chamber.
During the detailed shock profile survey, it was observed that the circumferential

symmetry of the shocks is extremely sensitive to the symmetry of the flow field. Any
small asymmetry in the flow, introduced by a small misalignment or by an asymmetric
blockage in the plenum chamber, causes detectable asymmetry in the shock structure
and, sometimes, the appearance of an additional weak shock system on one side of the
jet. Therefore, special care had to be taken to eliminate all sources of asymmetry from
the jet facility.

One undesirable feature, when making phase-averaged measurements, is the
unstable nature of the screech tone (Davis & Oldfield 1962) for most of the operating
(M

j
) conditions. The microphone signal shows that the screech appears in bursts,

which become more intermittent during mode switching. Since the oscillation of the
shocks is found to be closely tied to the nature of the screech tone, it was necessary to
operate the jet at a few selective Mach numbers where stable tones can be obtained over
a long period of time. The detailed data were taken for two operating conditions, for
which the fully expanded jet Mach numbers (M

j
), screech frequencies and screech

modes are, respectively, 1±19, 8400 Hz, axisymmetric, and, 1±42, 5400 Hz, helical. The
corresponding Reynolds numbers, based on the fully expanded jet velocity, U

j
, and the

nozzle diameter are, respectively, 0±93¬10' and 1±2¬10'.
Another concern, that finally limits the measurement accuracy, is the fluctuating

plenum pressure which also moves the shock structures. The compressed air was
supplied from a central facility which feeds many other test installations. Therefore,
certain fluctuations were unavoidable. However, the plenum pressure, measured using
a pressure transducer, was continuously monitored and the data acquisition was
performed only when it remained within ³0±7% of the desired setting. This condition
was imposed for all data presented in this paper.

The flow field was visualized by a standard schlieren system using two 152 mm
diameter and 914 mm focal length spherical mirrors. The details of the schlieren system
can be found elsewhere (Panda 1996). A limited amount of time-averaged axial velocity
data obtained from a 1-component, dual-beam, forward scatter, LDV system are
presented. The system consists of a 4 watt, Lexel, argon-ion laser as the light source, a
TSI Colorburst unit (TSI 9201) for colour separation and beam splitting purposes,
fibre optic cables and a two-component fibre optic probe (TSI 9118). To minimize the
particle lag in the shock-containing plume, very small diameter (0±6 µm) polystyrene
latex (PSL) spheres were used as seed particles.

3. Results and discussion

3.1. Visualization of the motion

Figure 2 shows time-averaged and instantaneous schlieren visualizations of the jet flow
field. Flow is from left to right in all photographs presented in this paper. The time-
averaged photograph was obtained by exposing a single negative to eight random
flashes. The darker regions of figure 2(a) represent shock compression and the brighter
ones expansion zones. The sharp vertical boundaries at the end of each compression
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F 2. Schlieren photographs of M
j
¯ 1±19 jet. (a) Time-averaged photograph; (b)–(g) spark

schlieren photographs at equal phase intervals over a screech cycle. The vertical arrows denote shock
locations. The dashed line joins the positions of one organized structure.

zone correspond to the termination position of each shock in the shear layer. Such
termination positions are marked by vertical arrows, and numbered by Roman
numerals beginning with the first shock from the nozzle exit.

The spark schlieren photographs of figures 2(b) to 2(g) are significantly different
from the time-averaged one. In addition to the shock compression regions, there are
dark axisymmetric structures that convect downstream as the phase time progresses. A
chain line, joining the positions of one such structure, shows the convection process.
These are identified as the organized turbulent vortices convecting downstream with
the flow. Recall that the screech mode for the M

j
¯ 1±19 jet is axisymmetric ; therefore,

the organized turbulent vortices are also axisymmetric. The 1 microsecond spark
duration has essentially frozen the flow at various phases of screech cycle, and has
made the convective structures visible ; while the random exposures of the time-
averaged photograph have averaged out their footprints. The shock waves, especially
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F 3. Spark schlieren visualization of M
j
¯ 1±42 jet at equal phase intervals over a screech cycle.

the ones lying further downstream from the nozzle exit, undergo considerable
distortion and show some oscillation.

The shock oscillations are somewhat clearer in figure 3, which shows the M
j
¯ 1±42

jet. A lower schlieren sensitivity, obtained from a lower knife-edge cut off, has
eliminated the impressions of the large organized vortices, while leaving behind the
signatures of the strongest density gradients present across the shocks. Similar to the
preceding figure, the distortion and displacement progressively increase for the shocks
formed further downstream from the nozzle exit. The first shock does not show any
discernable motion. A careful examination of the individual shock boundaries from
frame to frame shows a vertical up and down motion and associated deformation of
the triangular shape of the second and third shocks. These are two-dimensional
impressions of a helical motion where the shock cones precess about the jet centreline.
Note that the screech mode for this Mach number condition is also helical. Further
details of the shock motion will be clear from the quantitative data.

In this context two excellent cine! films of schlieren visualization by Westley &
Woolley (1968a, 1970) should be mentioned. (These were brought to the author’s
attention after completion of the present work.) The shock–turbulence interaction
visualized in these films shows generation of a new shock when a turbulent disturbance
convects over an existing shock wave. This has been referred to as shock splitting in
this paper. The second shock of figure 2(d ) and the third shock of figure 2 (b) indicate
the shock splitting phenomenon. Since, a schlieren photograph presents integrated
information over the light path from shock waves, turbulent eddies and sound waves,
definite conclusions about shock oscillation cannot be made. This is overcome by the
laser scattering technique which has a short depth of field, and a strong scattering
signature clearly differentiates shock splitting from all others.
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3.2. Time-a�eraged measurement

The optical detection technique provides an easy tool to measure quantitatively the
position of the shock waves and the distance over which they move. The time-averaged
shock position is determined by moving the laser beam from point to point along the
streamwise direction and by measuring the root-mean-square (r.m.s oV#) value of
the voltage drop (V ) across the photomultiplier tube. It is worth repeating here that the
r.m.s. reading from the PMT circuit is zero if there is no shock on the laser path, or
if the laser is piercing the shock without being tangent to any part of it. However, if
the beam is touching a shock surface, a large r.m.s. reading is obtained. Figures 4(b),
4(c) and 4(d ) show results of axial traverses from three radial positions; r}D¯ 0±4, 0±2
and 0 (centreline), respectively.

The time-averaged schlieren photograph of the M
j
¯ 1±4 jet in figure 4(a) shows the

shock locations. The shock position data obtained by a laser survey close to the shear
layer (r}D¯ 0±4, figure 4b) are characterized by quasi-periodic spikes which line-up
with the base of the triangular shock boundaries seen in the schlieren photograph.
Similar data obtained from inside the jet (r}D¯ 0±2 and 0, figures 4(c) and 4(d)) show
that the spikes appear progressively upstream. This is consistent with the conical shape
of the shock surfaces. For example, the narrow laser beam touches a shock cone at
points further upstream when traversed along the jet centreline (r}D¯ 0) as compared
to a similar traverse made at r}D¯ 0±2. The height of each spike is related to the
scattered light intensity, which, in turn, is related to the shock strength. As the density
jump across a shock increases the scattered light intensity also increases. The
relationship, however, is very nonlinear (Panda & Adamovsky 1995). Moreover, for
oscillating shocks the measured voltage depends on the fraction of time the shock
surface is in position to scatter the light beam. Therefore, it is difficult to draw any
quantitative inference about shock strength from the absolute value of the
photomultiplier signal. Nevertheless, in a qualitative sense, based on the progressive
drop in the r.m.s. voltage peak, it is expected that the shock strength progressively
diminishes from the first to the fourth shock. Noticeably, the r.m.s. voltage obtained
from the centreline position of the second shock (figure 4d ) is very weak. A possible
reason for this is discussed in the next section where phase-averaged measurements are
presented. Such measurements are also useful in explaining another feature : an
increase in the width of the r.m.s. voltage spikes (for all but the first shock) from the
shear layer to the centre of the jet. The width shows the spatial distance over which a
particular shock can be detected, and is a measure of the amplitude of shock
oscillation.

The shock position data shown in figures 4(b) to 4(d ) are affected by the depth of
field of the optical set-up. The experimental set-up used for the earlier data, presented
in Panda (1995b) had a very large depth of field that sensed scattered light generated
anywhere on the laser path. Therefore, similar time-averaged shock position data
presented in the above reference are more complex to analyse. It has been mentioned
above that the depth of field of the current set-up is ³4 mm (³0±15 r}D).

The Mach number distribution of figure 4(e) was obtained by laser-Doppler
velocimetry (LDV) measurements of the time-averaged axial velocity component. The
distribution shows many undulations with the local value overshooting the fully
expanded jet Mach number and then smoothly dropping close to unity. The dashed
lines between figures 4(d ) and 4(e) mark the upstream extreme of motion of each
shock. It can be seen that, in general, local Mach number increases up to this boundary
and then starts to drop. Unlike a sharp drop expected across a stationary shock, the
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F 4. (a) Schlieren photograph of M
j
¯ 1±42 jet ; (b)–(d ) Shock locations identified by laser

survey from indicated radial positions ; (e) Centreline Mach number distribution obtained from LDV
measurement.

measured decrease is far too smooth. Velocity measurements across a shock are always
affected by ‘particle lag’, that is, the inability of the particles to decelerate to the
downstream velocity after crossing a shock. The required distance needed to attain
95% of the downstream velocity, for the present condition, is estimated to be about
2 mm (x}D¯ 0±08, Vom Stein & Pfeifer 1972; Yanta, Gates & Brown 1971). However,
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F 5. Histogram of the particle velocity distribution in M
j
¯ 1±42 jet at x}D¯ 2±37, r}D¯ 0.

the measured data of figure 4(e) show that the velocity distribution drops slowly over
an average distance of 15 mm, half of the shock cell spacing. It is believed that there
are two reasons for the slow decrease. First, it is due partly to the compression fan that
exists beyond the oblique shock boundary (Pack 1948). Secondly, the shock motion
plays a significant role in smoothing out the velocity variation. Additional evidence is
provided in figure 5 which shows the histogram of the particle velocity distribution
obtained from the second shock location. This histogram is bimodal with a high
(average of 372 m s−") and a low (average of 267 m s−") velocity mode. As the shock
oscillated back and forth about the measurement point, particles moving at a speed of
either the upstream or the downstream side of the shock were encountered, leading to
the bimodal distribution. Such bimodal histograms were also reported earlier in the
literature on LDV measurements around an oscillating normal shock (Chriss 1991). In
the present experiment, such distributions were obtained from many measurement
stations lying in the shock oscillation regions. Clearly, the time-averaged measurement
masks such details and provides a smoother velocity distribution which is very different
from the instantaneous picture.

One particular problem in LDV measurements in the vicinity of a shock, is the
appearance of the shock–laser interaction phenomenon when any of the two beams
becomes tangent to the shock surface. In other words, the phenomenon of light
scattering by the shock waves, the basis of the present shock-detection technique, also
appears undesirably during LDV measurements. The data rate is found to change
unpredictably in these regions. The effect of this phenomenon on the LDV data has
remained unclear.

3.3. Phase-a�eraged measurements

The time-averaged laser survey data, presented earlier, provide only the locations
where shock waves are present. To determine the unsteady characteristics of the shock
motion, phase-averaged measurements were performed. Since the shocks oscillate at
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F 6. Phase-averaged PMT data at indicated phases of screech cycle showing the motion of
first shock in M

j
¯ 1±42 jet at (a) r}D¯ 0±3 and (b) r}D¯®0±3. (c) A schematic of oscillation.

the screech frequency, the signal from a microphone placed upstream of the nozzle is
used as a reference for the phase-averaged measurements. To eliminate the harmonics
and other noise components, the reference microphone signal is band-pass filtered
about the fundamental screech frequency. This produces a repeatable phase reference.
The optical system is traversed from point to point in the flow field and, at every point
the PMT signal, V²t,x}D, r}D´, is phase averaged over more than 100 screech cycles to
obtain ©Vª²τ}T,x}D, r}D´. The data are stored in the Microvax computer for later
processing.

To determine the instantaneous axial position of a shock at a given radial distance
(r}D), the phase-averaged voltage values are retrieved for all streamwise locations
(x}D). Figures 6(a) and 6(b) show two such plots, for 10 different phase times, τ}T, for
the first shock in the M

j
¯ 1±42 jet. Since the amplitude of motion of this shock is very

small (about 1±25 mm), only a short streamwise distance is shown in each figure. Note
that there are more than 20 data points, at an interval of 0±127 mm, used in each plot.
Such a fine resolution was possible owing to the small laser beam waist (0±16 mm)
used in the experimental technique. The single peak showing the position of the shock
is seen to oscillate sinusoidally. In figure 6(a), the shock at first moves downstream to
its extreme position and then returns back to its upstream extreme. However, in figure
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6(b), corresponding to a diametrically opposite radial station, the shock motion is
reversed, that is 180° out of phase. Various information, such as the amplitude and the
mode shape of shock motion, can be obtained from data similar to those shown in
figures 6(a) and 6(b). The oscillation amplitude is the streamwise distance between the
extreme positions of the shock. Further discussion of the oscillation amplitude is
postponed to a later part of the text. A discussion of the mode shape of shock motion
follows.

Determination of the circumferential mode of oscillation requires measurement of
the relative phase at a few circumferential locations. The traversing unit on which the
optical detection system was mounted, however, did not allow circumferential rotation
of the laser beam. Measurements could be made at different radial positions over a
meridian plane. It is observed that the phase-averaged PMT traces obtained from the
first shock are identical to that shown in figure 6(a) for all radial locations above the
jet centreline (r}D" 0), and to that of figure 6(b) for all locations below the jet
centreline (r}D! 0). In other words, the complete upper leg oscillates in phase and the
same is true for the lower leg, while a phase difference of 180° is maintained between
them. A schematic of the motion is shown in figure 6(c). The triangular shock
boundary is shown to tilt forward and backward. Some supporting evidence for such
a motion can be found in the flow visualization photographs of figure 3. Such a tilting
motion in the plane of measurement can be due to a helical or a flapping mode, and
more data at a few other circumferential locations are necessary to determine the exact
mode of oscillation. However, in view of the helical mode of the screech tone emitted
by the M

j
¯ 1±42 jet, it may be concluded that the shock cone also oscillates in a helical

fashion.
Data presented in figures 6(a) and 6(b) show a smooth sinusoidal motion, which is

found to be characteristic of the first shock in all underexpanded jets studied for the
present experiment. The motion of the subsequent shocks, however, is found to be
more complex and involves the universal feature of a sudden splitting into two shocks.
This is demonstrated in figure 7 where the instantaneous profiles of the third shock in
the M

j
¯ 1±19 jet are presented. The phase-averaged PMT data for a given phase of the

screech cycle, obtained from traverses at nine different radial stations, are plotted in the
individual graphs. Out of 23 such graphs covering a screech cycle, only six are shown
in figure 7. Data from each axial traverse is shifted vertically by its radial position (see
the graph for τ}T¯ 0±347), and the spatial distance covered in both abscissa and
ordinate is the same: one jet diameter. There are 20 to 40 data points in each axial
traverse and the total distance covered in each traverse was carefully chosen to cover
the complete amplitude of shock motion. Determination of the shock shape from such
a multiple plot of the phase averaged PMT data is shown in the graph for τ}T¯ 0.
Since, in any axial traverse the base position of the voltage peak represents the shock
location, such positions in each trace are marked, and a smooth line is drawn through
all such marks. This smooth line represents the shock front at the particular phase of
the screech cycle.

The shock fronts seen in figure 7 appears to have the shape of a concave disk (as
opposed to a cone) in three dimensions. This is supported by the appearance of the
same third shock in the schlieren photograph of figure 2(a). The shock also moves in
an axisymmetric mode which is consistent with the screech mode radiated by the jet.
As the phase time τ}T progresses from 0, the centre of the shock moves downstream
(i.e. the concaveness decreases). At the phase time of 0±347, a second weak shock
appears upstream, which progressively becomes stronger and also moves downstream.
Meanwhile, the original shock, still moving downstream, becomes weaker and is seen
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F 7. Phase-averaged PMT data obtained at nine different radial stations arranged to show
the instantaneous profiles of the third shock at the indicated phases of the screech cycle.

to disappear at τ}T" 0±87. The process repeats at each screech cycle, which makes the
shock motion analogous to that of a moving staircase.

To visualize the relative motion between the neighbouring shocks, data similar to
figure 7 obtained for the first four shocks formed in the M

j
¯ 1±19 jet are presented in

figure 8. The phase reference for all measurements was obtained from a single
microphone placed at a fixed location upstream of the nozzle exit. To construct this
figure individual graphs showing the instantaneous positions of each shock are plotted.
Subsequently, all such plots for a given phase of the screech cycle are pasted together.
Note that the spacings between the shocks shown in this figure are not the true
spacings, as individual graphs are pasted closer to save space.

The first shock has an unexpected diamond shape. The upstream part of the diamond
is due to the conical first shock (see schlieren photograph of figure 2a). However, the
additional downstream part may be due either to a reflection of the upstream shock
from the shear layer, or to a slip stream which may be able to cause laser light
scattering. The combined system moves by a far smaller amplitude (fraction of a
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F 8 (a–c). For caption see facing page.

millimetre) than the following shocks, and this motion is not clearly detectable in this
plot. The oscillation amplitude of the subsequent shocks progressively increases, and
each shock also demonstrates the splitting behaviour as discussed earlier. Some
indication of shock splitting is visible in the spark schlieren photographs of figure 2.
The third shock is clearly split in figure 2(b), and has recombined in 2(e). A split second
shock can be seen in figure 2(d ). The cine! films of Westley & Wooley (1968a, 1970) also
show a similar splitting process. Clearly, the passage of the coherent vortices is the
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F 8. Phase-averaged PMT data obtained at nine different radial stations arranged to show the
instantaneous profiles of first four shocks in M

j
¯ 119 jet at the indicated phases of the screech cycle.

reason for this behaviour. A careful examination of the schlieren photographs shows
that the splitting process occurs as a convected vortical structure spills over a shock
disk. The eventual recombination occurs when the vortex moves to the middle of the
following shock cell.

Returning to figure 8, the splitting process occurs at a progressively increasing phase
of the screech cycle for a shock placed further downstream. The time difference
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F 9. Phase-averaged PMT data obtained at nine different radial stations arranged to show the
instantaneous profiles of the third shock in M

j
¯ 1±42 jet at the indicated phases of the screech cycle.

(∆τ}T )
meas

in the occurrence of splitting between the second and third, and the third
and fourth shock is measured to be 0±62. This is nearly the same time (within
experimental accuracy) needed for a vortical structure to move a shock cell distance L

s
.

The average convective velocity, u
c
of the organized vortices in this jet is measured to

be 238 m s−" (Panda 1996) and the average shock cell spacing L
s
¯ 19±5 mm.

Therefore, the average time needed to move a shock cell distance, normalized by
screech time period T, is 0∆τ

T 1
est

¯
L

s

u
c
T

¯ 0±69.

The helical shock motion in the M
j
¯ 1±42 jet is far more complicated than the

axisymmetric motion presented above. The oscillation of the first shock is described
earlier (figure 6). The profiles of the third shock at various phases of the screech cycle
are presented in figure 9. This figure also demonstrates a splitting behaviour similar to
that described earlier. However, the conspicuous aspect is the disappearance of either
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Strouhal number Average
Amplitude of oscillation}D

M
j

screech mode
SPL at lip

shock cell
spacing, L

s
}D r}D

1st
shock

2nd
shock

3rd
shock

4th
shock

1±19 0±59 0±77 0±0 0±025 0±12 0±19 0±29
Axisymmetric 0±2 0±02 0±13 0±13 0±22
149±5 dB 0±4 0±025 0±06 0±07 0±10

1±42 0±33 1±28 0±2 0±04 0±17 0±22 0±48
Helical
160±6 dB

0±4 0±04 0±084 0±08

T 1. Measured amplitude of shock motion.

the upper (r}D" 0) or the lower (r}D! 0) half of the conical shock boundary during
certain phases of the oscillation cycle. The upper half of the conical boundary is absent
at τ«}T «¯ 0 when the lower half is the strongest, while the lower half is absent at
τ«}T «¯ 0±5 when the upper half is the strongest. The flow visualization photograph of
figure 3 also supports this measurement. The upper half of the second shock in figure
3(a) and the lower half of the same in figure 3(c) are nearly absent. There is a 180°
phase difference between the above two figures. The third shock also shows similar
behaviour. Nevertheless, it should be pointed out that any definite information on
shock motion is difficult to obtain from a schlieren photograph. The dark regions of
the jet, in a schlieren photograph, only represent a compression region which may or
may not be bounded by a shock wave.

One effect of shock splitting is the large, spatial amplitude of motion that is more
than one third of the average shock spacing. The amplitudes of shock motion, shown
in Table 1, were obtained from the phase-averaged data plotted similar to figure 6(a).
Table 1 also shows the screech amplitude at the nozzle lip. The oscillation amplitudes
are expected to increase with an increase in the screech level. The Strouhal number is
based on the screech frequency, fully expanded jet velocity, U

j
, and the nozzle

diameter. The large-amplitude shock motion, inside the potential core, is also
responsible for a broadening of the r.m.s. voltage spikes mentioned earlier in
conjunction with figure 4. Table 1 shows that the first shock oscillates with a nearly
constant amplitude from the tip to the core; for all other shocks, the amplitude is
minimum at the tip and maximum at the core. Oscillation amplitude also increases
progressively for the shock formed further downstream. The shocks formed after the
fourth one are very weak and highly distorted. The PMT signal also becomes weak and
difficult to analyse. Such data are not presented in this paper.

4. Analytical formulation of shock oscillation based on the linear theory

In an underexpanded jet, shock cells are formed owing to the excess pressure (∆p)
over the ambient level (P

a
) present at the nozzle exit. The steady scenario is perturbed

in a screeching jet by the presence of the screech tone that propagates along the jet
boundary (Panda 1996). The pressure fluctuations associated with the screech sound
effectively modulate the steady ambient level (figure 10). In the following analysis the
oscillation of the jet column owing to the periodic oscillation of the ambient level is
performed based on the linear theory of the shock cell structure. The steady state
solution of shock cell structure was obtained by Pack (1950) ; the following analysis
extends it to the unsteady situation. The success of the Pack solution is in predicting
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Propagating screech sound (δp) exp ( i (ks x + ω t ))

r

R

Nozzle

x

Uj

Pressure
Pa + Dp

è (x, t) inviscid
jet boundary

F 10. Schematic of a screeching, underexpanded jet column.

the shock locations, which are determined as the inflectional points in the boundary
displacement. The goal of the present analysis is to calculate the oscillation of the
inflectional points and thereby determine the amplitude of shock oscillation along the
jet boundary. The analysis does not strive to predict the frequency and amplitude of
screech tone; these are assumed to be known experimental data. The linear analysis is
applicable to the first shock and perhaps justifiable to predict the small-oscillation
amplitude of all others in the shear layer. The nonlinear mechanisms leading to the
large-amplitude shock oscillation in the jet core are discussed in the next section. For
the present vortex sheet analysis the shear layer around the jet is assumed to be thin
and the dynamics of the shock oscillation is primarily believed to be an inviscid
phenomenon.

The unsteady, linearized pressure perturbation equation that can be obtained from
the linearized continuity, momentum and energy equation is given by (see Howe &
Ffowcs Williams 1978) :

1
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where, c
j

is the speed of sound in fully expanded jet, U
j

is the fully expanded jet
velocity, and p is the axisymmetric perturbation pressure at the nozzle exit. A solution
of the steady part of equation (1) is known as the Prandtl–Pack solution (Pack 1950;
Tam 1972; Howe & Ffowcs Williams 1978). For the present unsteady formulation, the
effective excess pressure over the ambient level along the jet boundary is a sum of the
steady part (∆p) and the propagating part associated with screech sounds. Since
pressure is reckoned relative to the steady ambient level, the boundary conditions that
equation (1) must satisfy are :
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where, R is the jet radius, ω and k
s

are the screech frequency and wavenumber,
respectively, and δp is the amplitude of pressure fluctuation in the screech tone. The
radial displacement of the jet boundary, η(x, t) (sketched in figure 10), from r¯R is
obtained from the radial component of the momentum equation as:
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Since, the pressure fluctuations associated with the screech tone are far smaller than
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the steady part of the excess pressure, δpi∆p, a separated form of the solution is
looked for:

p(r,x, t)¯ p
"
(r,x)­p

#
(r,x) eiωt.

This is permissible owing to the linearity of the governing differential equation. The
two parts of the perturbation pressure, p

"
and p

#
, satisfy, respectively, the steady and

unsteady part of the boundary conditions. In a similar fashion the boundary
displacement η(x, t) is also separated into a steady and a time-dependent part

η(x, t)¯ η
"
(x)­η

#
(x) eiωt. (4)

Now the governing equation (1) and the boundary conditions (2) and (3) can be
separated out into a steady and a time-dependent part. First, the steady state equation
and boundary conditions are as follows:
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The steady part in equations 5(a–c) has been solved in the past, as referred to earlier.
The solution following Howe & Ffowcs Williams (1978) is as follows:
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The transforms of equation (6a) and the boundary conditions (6b) produce:
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The final goal of the analysis is to determine the unsteadiness of the jet boundary (η).
The unsteady part of the boundary displacement (η

#
) satisfies equation 6(c). A Fourier

transform of this equation produces:
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A substitution of p
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by equation (10) and an inverse transform provides an integral
relation as follows:
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The integrand has a second-order pole at k
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residues. Note that to evaluate residues for the last set of poles, a quadratic equation
is encountered, as is evident from equation (9a) :
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Therefore, the residues have to be evaluated in the limits of k
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In the final solution, the steady and the time-dependent contributions are summed
up according to equation (4). The real part is of physical interest :
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F 11. Calculated boundary displacement function for M
j
¯ 1±42 jet ; ——, steady state part ;

–––, complete unsteady solution for ωt¯ 0; [[[, ωt¯π.
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The right-hand side of the first line of equation (13) represents the steady state
displacement of the jet boundary. The following three lines show three parts of the
time-dependent component. The first part (2nd line of equation (13)) shows a
disturbance at the same wavenumber of the forcing acoustic waves ; the second part
(3rd line) is a spatially growing disturbance with a new wavenumber of ω}U

j
, and the

third part (4th line) shows two sets of waves of wavenumbers Q+
n

and Q−
n
. From the

third part Q+

"
is the principal contributor towards the total sum. For a numerical

calculation the excess pressure above the ambient level, ∆p, can be determined from M
j

and the plenum pressure p
!

using isentropic relations:
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where, γ is the ratio of specific heats. The amplitude of the screech tone is measured
at the nozzle lip and the amplitude of pressure fluctuation is determined from the
measured sound pressure level (SPL) data:

δp¯ 2o2 10(SPL/#!−&).

The algebraic boundary displacement relation of equation (13) was evaluated for the
M

j
¯ 1±42 jet at two different phases of the screech cycle. The unsteady displacement

function, η, at two different phases (ωt¯ 0 and π) as well as the steady state
component, η

"
, are shown in figure 11. As expected, the fluctuation amplitude is small.

From the steady state analysis (Pack 1950), it is known that the shock locations
(at r¯R) are the local minima in the boundary displacement function. By closely
examining figure 11, it is found that the minima locations change by a small amount
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Screech SPL at nozzle
Shock

number from
Oscillation amplitude}jet diameter

M
j

frequency lip (dB) nozzle exit Calculated Measured

1±186 8425 149±5 1 0±0205 0±022
2 0±075 0±06

1±242 5500 158±7 1 0±0525 0±033
1±424 5375 160±6 1 0±0525 0±036

2 0±1022 0±084
1±52 4875 160±2 1 0±065 0±045
1±58 4650 158±5 1 0±05 0±05

T 2. Comparison between calculated and measured shock oscillation amplitudes
at jet boundary.

at various phases (ωt) of the screech cycle. Equation (13) shows that the spatial and
temporal dependency of the unsteady part are separable. Therefore, the shock
oscillation amplitude can be calculated from the separation of the minima at ωt¯ 0
and ωt¯π. Table 2 gives the calculated and measured amplitudes for the first and the
second shocks at various jet operating conditions. The shock motion is measured at
r}D¯ 0±45. The sound pressure amplitudes, measured at the nozzle lip using a
microphone, are also tabulated. There is a reasonable agreement between the measured
and the calculated shock oscillation amplitudes, especially considering the large
uncertainty in the measured data (estimated to be ³15%) and the limitations of the
analysis. The measurement uncertainty is due to the finite diameter of the laser beam
and the plenum pressure fluctuation. The present axisymmetric analysis is valid only
for a similar screech mode, yet data presented in table 2 include flapping and helical
modes.

A side benefit of the above analysis is an insight into the receptivity of the jet column
from the external acoustic pressure fluctuations. In a screeching jet, excitation of the
shear layer fluctuations by the screech tone sustains the feedback loop. The current
belief is that the receptivity process occurs at the nozzle lip (Powell 1953; Tam 1991).
The present analysis demonstrate a different route, where the acoustic fluctuations are
shown to generate various waves along the jet boundary without the necessity of the
nozzle lip.

5. Additional causes of shock oscillation

The periodic pressure perturbation from passing sound waves is one of the many
causes for shock oscillation. It is the major reason for the oscillation of the first shock.
It is conjectured that three additional factors come into play for all others shocks lying
further downstream. First, the coupling between the motion of each shock; secondly,
the pressure fluctuations associated with the passage of the large organized structure
along the jet shear layer, and thirdly, the distortion of the supersonic–subsonic
interface in the jet shear layer caused by the same organized vortices. The first factor
arises as the flow oscillation created by a moving shock is transmitted to the following
ones. Since, the flow field downstream of an oblique shock remains supersonic,
information on shock oscillation does not propagate upstream, at least not through the
potential core. Therefore, the first shock is expected to remain uncoupled from that of
the following ones. The coupling factor will be progressively pronounced for shocks
formed further downstream.
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F 12. Schematic of shock movement caused by distortions in the supersonic–subsonic
interface; (a) undistorted, (b) bulged out interface, (c) bulged in interface.

Perhaps, a combination of the second and third factors is the primary reason for the
large-amplitude shock oscillation and the associated shock-splitting phenomenon. In
an underexpanded jet, shocks are formed by a mechanism of internal reflection of
expansion waves into compression waves from the supersonic–subsonic interface, and
the subsequent coalescence of the compression waves (Pack 1948). The passage of the
large turbulent structures is expected to distort this interface. For example, let us
consider the M

j
¯ 1±19 jet for which the organized structures are in the axisymmetric

mode. The passage of such structures will cause the otherwise cylindrical interface to
bulge outward and inward periodically (figure 12). In the former situation, the shock
will be formed at a downstream location and, for the latter at an upstream location.
The amplitude of shock oscillation, governed by the above scenario, will progressively
increase as the organized structures grow in size. This is, once again, consistent with
the experimental observation that the shocks formed further downstream oscillate by
a large amplitude.

Aside from the large-oscillation amplitude a significant perturbation in the
supersonic–subsonic interface is expected to change the focusing of the compression
wave, which may not coalesce sufficiently to form a shock. This, perhaps, is the reason
for the periodic appearance and disappearance of the alternate sides of the shock cone
in the M

j
¯ 1±42 jet (figure 9).

6. Summary and conclusion

The oscillatory motion of various shocks formed in moderately underexpanded jets
(M

j
¯ 1±19 and 1±42) issuing from a convergent nozzle is studied in this paper. At these

operating conditions the jets produce intense screech tones in, respectively,
axisymmetric and helical modes. The various reasons for shock oscillation are also
discussed in this paper. The primary results are as follows.
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1. A new optical detection technique, based on the laser light scattering by shock
waves, is used to determine instantaneous shock position. By relating the time and
position information to the phase of the screech cycle, a vast amount of information
on the amplitude, phase, and nonlinearity of the shock motion is gathered. It is
determined that all but the first shock move by a small amplitude at the tip and by a
very large amplitude at the core. Since the motion is caused by periodic vortices passing
through the shear layer, the part of the shock lying in the shear layer is expected to
move the most. The analysis of shock–turbulence interaction by Ribner (1969), and the
numerical simulations of a two-dimensional vortex interacting with a single shock
(Ellzey et al. 1995) also demonstrate that the region of direct interaction is the region
of the largest shock deformation. The experimental data clearly differ from these
results. The discrepancies are due to some major factors, such as the boundedness of
each shock by a shear layer and the modifications of the shock formation mechanisms
by the passing vortices, that are not considered in the simple models.

2. The instantaneous profiles of the first four shocks over an oscillation cycle were
constructed through detailed phase-averaged measurements. Such data show a
splitting of each shock (except for the first one) into two weaker ones. During a cycle
of motion the downstream shock progressively fades away while a new shock appears
upstream. This ‘moving staircase-like ’ motion results in the significantly large-
oscillation amplitude of all but the first shock. The first shock demonstrates a smooth
sinusoidal motion about its mean positions.

3. The time-averaged axial velocity data obtained by laser Doppler velocimetry
show a periodic variation where any discontinuity is smoothed by shock oscillation.
Shock oscillation is further confirmed by the appearance of bimodal particle velocity
histograms at the shock locations.

4. There is more than one reason for shock oscillation. One interesting factor,
special to a screeching jet, is the influence of the intense screech tone that propagates
upstream along the jet boundary. The screech tone adds a small fluctuating component
to the steady ambient pressure. The resulting periodic oscillation of the jet boundary
is determined through an analytical solution of the unsteady, linearized Euler’s
equation. The final solution shows the generation of three types of waves, all of which
have the same frequency as that of the screech sound, but different wavenumbers. One
of them is found to grow along the jet flow direction. The net effect of all such waves
in oscillating the first and the second shock is calculated, and the oscillation amplitude
is compared with the measured value for various jet operating conditions. A reasonable
agreement between the two shows the usefulness of the analysis.

5. Spark schlieren photographs demonstrate that a periodic convection of large
organized vortices over the shock train results in the shock-splitting and the large-
oscillation amplitude of all but the first shock. The nonlinear mechanisms go beyond
the scope of the linearized analysis. However, the effect of the organized vortices in
changing the shock formation mechanism by modifying the sonic line is qualitatively
discussed in the text.
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