
CFD General Notation System

SIDS-to-ADF File Mapping Manual

Document Version 2.5

CGNS Version 2.5

Contents

1 Brief Description of CGNS 1

2 CGNS Documentation 3
2.1 Description of the Documents . 3

2.1.1 CGNS Overview and Entry-Level Document 3
2.1.2 A User’s Guide to CGNS . 3
2.1.3 ADF User’s Guide . 3
2.1.4 HDF Documentation . 4
2.1.5 Standard Interface Data Structures . 4
2.1.6 The SIDS-to-ADF File Mapping Manual . 4
2.1.7 The SIDS-to-HDF File Mapping Manual . 5
2.1.8 The CGNS Mid-Level Library . 5

2.2 Which Documents Do You Need? . 5
2.2.1 Prospective Users . 5
2.2.2 End Users . 6
2.2.3 Applications Code Developers . 6
2.2.4 CGNS System Developers . 6

2.3 How to Use This Document . 6

3 CGNS Background 7
3.1 Purpose . 7
3.2 Participation and Brief History . 7
3.3 Scope . 8

4 Summary Description of ADF (Advanced Data Format) 9
4.1 General Description of ADF . 9

4.1.1 ADF Files and the ADF Core . 9
4.1.2 The Conceptual Structure of ADF Files . 9
4.1.3 The ADF Mid-Level Library (projected) . 10

4.2 The Structure of an ADF Node . 10
4.2.1 The Node ID . 11
4.2.2 The Node Name . 11
4.2.3 The Label . 11
4.2.4 The Data Type . 11
4.2.5 The Number of Dimensions . 12
4.2.6 The Dimension Values . 12
4.2.7 The Data . 12
4.2.8 The Child Table . 12

5 General CGNS File Mapping Concepts 13
5.1 Use of ADF Nodes in CGNS . 13

5.1.1 The Node ID . 13
5.1.2 The Node Name . 13
5.1.3 The Label . 14
5.1.4 The Data Type . 14
5.1.5 The Number of Dimensions . 14
5.1.6 The Dimension Values . 15
5.1.7 The Data . 15
5.1.8 The Child Table . 15
5.1.9 Cardinality . 15

iii

5.1.10 Parameters . 15
5.1.11 Functions . 16

5.2 CGNS Databases . 16
5.2.1 Definition of a CGNS Database . 16
5.2.2 Location of CGNS Databases within ADF Files 16
5.2.3 File Management . 17

5.3 Internal Organization of a CGNS Database . 17
5.3.1 The CGNSBase_t Node . 17
5.3.2 The CGNSLibraryVersion_t Node . 17
5.3.3 Topological Basis of CGNS Database Organization 17
5.3.4 Topics Not Currently Covered . 18

6 Detailed CGNS Node Descriptions 19
6.1 Basic CGNS Nodes . 19

6.1.1 Descriptor Group . 19
6.1.1.1 Descriptor_t . 19
6.1.1.2 Ordinal_t . 20

6.1.2 Physical Data Group . 21
6.1.2.1 DataClass_t . 21
6.1.2.2 DimensionalUnits_t . 21
6.1.2.3 AdditionalUnits_t . 22
6.1.2.4 DataConversion_t . 22
6.1.2.5 DimensionalExponents_t . 23
6.1.2.6 AdditionalExponents_t . 23
6.1.2.7 DataArray_t . 23
6.1.2.8 Integer Arrays . 24

6.1.3 Location and Position Group . 24
6.1.3.1 GridLocation_t . 24
6.1.3.2 Rind_t . 25
6.1.3.3 IndexRange_t . 25
6.1.3.4 IndexArray_t . 26

6.1.4 Auxiliary Data Group . 26
6.1.4.1 ReferenceState_t . 26
6.1.4.2 ConvergenceHistory_t . 27
6.1.4.3 IntegralData_t . 27
6.1.4.4 UserDefinedData_t . 27
6.1.4.5 Gravity_t . 28

6.2 Specialized Nodes . 28
6.2.1 Grid Specification . 28

6.2.1.1 GridCoordinates_t . 28
6.2.1.2 Elements_t . 29
6.2.1.3 Axisymmetry_t . 29
6.2.1.4 RotatingCoordinates_t . 29

6.2.2 Field Specification . 30
6.2.2.1 FlowSolution_t . 30
6.2.2.2 DiscreteData_t . 30

6.2.3 Connectivity Group . 31
6.2.3.1 Transform Node . 31
6.2.3.2 GridConnectivityType_t . 31
6.2.3.3 GridConnectivity1to1_t . 32
6.2.3.4 GridConnectivity_t . 33

iv

6.2.3.5 GridConnectivityProperty_t . 33
6.2.3.6 Periodic_t . 33
6.2.3.7 AverageInterface_t . 34
6.2.3.8 OversetHoles_t . 34
6.2.3.9 ZoneGridConnectivity_t . 34

6.2.4 Boundary Condition Group . 35
6.2.4.1 InwardNormalIndex . 35
6.2.4.2 InwardNormalList . 35
6.2.4.3 BCData_t . 36
6.2.4.4 BCDataSet_t . 36
6.2.4.5 BC_t . 37
6.2.4.6 ZoneBC_t . 37
6.2.4.7 BCProperty_t . 37
6.2.4.8 WallFunction_t . 38
6.2.4.9 Area_t . 38

6.2.5 Equation Specification Group . 38
6.2.5.1 GoverningEquations_t . 38
6.2.5.2 GasModel_t . 38
6.2.5.3 ViscosityModel_t . 39
6.2.5.4 EquationDimension . 39
6.2.5.5 ThermalConductivityModel_t . 39
6.2.5.6 TurbulenceClosure_t . 40
6.2.5.7 TurbulenceModel_t . 40
6.2.5.8 ThermalRelaxationModel_t . 40
6.2.5.9 ChemicalKineticsModel_t . 41
6.2.5.10 EMElectricFieldModel_t . 41
6.2.5.11 EMMagneticFieldModel_t . 41
6.2.5.12 EMConductivityModel_t . 41
6.2.5.13 FlowEquationSet_t . 42

6.2.6 Family Group . 42
6.2.6.1 Family_t . 42
6.2.6.2 FamilyName_t . 42
6.2.6.3 FamilyBC_t . 43
6.2.6.4 GeometryReference_t . 43
6.2.6.5 GeometryFile_t . 43
6.2.6.6 GeometryFormat_t . 44
6.2.6.7 GeometryEntity_t . 44

6.2.7 Time-Dependent Group . 44
6.2.7.1 BaseIterativeData_t . 44
6.2.7.2 ZoneIterativeData_t . 44
6.2.7.3 RigidGridMotion_t . 45
6.2.7.4 ArbitraryGridMotion_t . 45

6.2.8 Structural Nodes . 45
6.2.8.1 Zone_t . 46
6.2.8.2 CGNSBase_t . 46
6.2.8.3 SimulationType_t . 46
6.2.8.4 ZoneType_t . 47
6.2.8.5 CGNSLibraryVersion_t . 47

A CGNS File Mapping Figures 49

v

List of Figures

1 Example Hierarchy . 50
2 Example Node Structure . 51
3 CGNSBase_t Data Structure . 52
4 Zone_t Data Structure . 54
5 GridCoordinates_t Data Structure . 56
6 Elements_t Data Structure . 57
7 Axisymmetry_t Data Structure . 58
8 RotatingCoordinates_t Data Structure . 59
9 FlowSolution_t and DiscreteData_t Data Structures 60
10 ZoneGridConnectivity_t Data Structure . 61
11 GridConnectivity1to1_t Data Structure . 62
12 GridConnectivity_t Data Structure . 63
13 GridConnectivityProperty_t Data Structure . 64
14 Periodic_t Data Structure . 65
15 AverageInterface_t Data Structure . 66
16 OversetHoles_t Data Structure . 67
17 ZoneBC_t Data Structure . 68
18 BC_t Data Structure . 69
19 BCDataSet_t Data Structure . 71
20 BCData_t Data Structure . 72
21 BCProperty_t Data Structure . 73
22 WallFunction_t Data Structure . 74
23 Area_t Data Structure . 75
24 FlowEquationSet_t Data Structure . 76
25 GoverningEquations_t Data Structure . 78
26 GasModel_t Data Structure . 79
27 ViscosityModel_t Data Structure . 80
28 ThermalConductivityModel_t Data Structure . 81
29 TurbulenceClosure_t Data Structure . 82
30 TurbulenceModel_t Data Structure . 83
31 ThermalRelaxationModel_t Data Structure . 84
32 ChemicalKineticsModel_t Data Structure . 85
33 EMElectricFieldModel_t Data Structure . 86
34 EMMagneticFieldModel_t Data Structure . 87
35 EMConductivityModel_t Data Structure . 88
36 ConvergenceHistory_t Data Structure . 89
37 IntegralData_t Data Structure . 90
38 ReferenceState_t Data Structure . 91
39 DataArray_t Data Structure . 92
40 DimensionalUnits_t Data Structure . 93
41 DimensionalExponents_t Data Structure . 94
42 Family_t Data Structure . 95
43 FamilyBC_t Data Structure . 96
44 GeometryReference_t Data Structure . 97
45 BaseIterativeData_t Data Structure . 98
46 ZoneIterativeData_t Data Structure . 99
47 RigidGridMotion_t Data Structure . 100
48 ArbitraryGridMotion_t Data Structure . 101
49 UserDefinedData_t Data Structure . 102

vi

50 Gravity_t Data Structure . 103

vii

1 Brief Description of CGNS

The CFD General Notation System (CGNS) is a set of standards, together with software imple-
menting those standards, for the recording of data associated with Computational Fluid Dynamics
(CFD). Physical data storage is accomplished via a general database manager, either ADF (Ad-
vanced Data Format) or HDF (Hierarchical Data Format). The present document describes the
mapping from the Standard Interface Data Structures (SIDS) to the file structure provided by the
ADF database manager. A similar document, the SIDS-to-HDF File Mapping Manual, describes
the mapping for the HDF database manager.

1

2 CGNS Documentation

Documentation of CGNS is found in a number of related publications. These are maintained
separately for several reasons. First, they describe logically independent aspects of the CGNS system.
Second, many users will find that a subset of the documentation is sufficient for their needs. And
last, some portions of the system can be viewed as independent entities useful outside the context
of CGNS.

The main documents currently available are:

• CGNS Overview and Entry-Level Document
• A User’s Guide to CGNS
• ADF User’s Guide
• HDF Documentation
• Standard Interface Data Structures
• SIDS-to-ADF File Mapping Manual (this document)
• SIDS-to-HDF File Mapping Manual
• CGNS Mid-Level Library

2.1 Description of the Documents

In order to make the current document as self-contained as possible, basic information regarding
all components of the CGNS standard has been included. However, the reader should be aware of
the documents describing these other components. These should be regarded as the authoritative
and complete descriptions of their respective components of CGNS. Each of these documents is
described briefly in this section.

2.1.1 CGNS Overview and Entry-Level Document

This is an introductory document which provides an overall view of the purpose and components
of CGNS. The Overview is intended as an entry point into CGNS. Prospective users completely unfa-
miliar with CGNS should consult the Overview to determine whether CGNS provides the capabilities
they seek.

2.1.2 A User’s Guide to CGNS

The User’s Guide to CGNS has been written to aid users in the implementation of CGNS. It is
intended as a tutorial: light in content, but heavy in examples, advice, and guidelines. The guide
provides a concise overview of many of the most commonly-used features of the SIDS, and gives
coding examples using the CGNS Mid-Level Library to write and read simple CGNS files.

2.1.3 ADF User’s Guide

The ADF User’s Guide describes one of the underlying database managers, ADF (Advanced Data
Format), which may be used to create CGNS files. ADF is a binary format, based on a simple tree
structure. In principal, nearly any kind of data could be stored in ADF format. ADF was, however,
especially designed for the storage of large quantities of scientific data in a platform-independent and
randomly-accessible manner. The “ADF Core” is a set of portable routines which store and retrieve

3

SIDS-to-ADF File Mapping Manual

data in ADF format. These routines are written in C, but Fortran versions are also provided. The
ADF User’s Guide describes both the ADF format and the ADF Core routines in detail.

Because the CGNS File Mapping depends intimately on the format of the underlying database
manager, a summary of ADF data structures is provided in Section 4.

It should be emphasized that ADF, with its Core routines, constitutes a very general stand-alone
database manager which is not directly related to CFD. It can therefore be used to store any kind of
data once it has been specified where to place that data within the ADF format. This File Mapping
document describes the CGNS conventions governing that placement for CFD-specific data.

2.1.4 HDF Documentation

HDF5 (Hierarchical Data Format) is another underlying database manager that may be used to
create CGNS files, and is developed and maintained by the National Center for Supercomputing Ap-
plications at the University of Illinois at Urbana-Champaign. Documentation for HDF5 is available
at the HDF5 Home Page, at http://hdf.ncsa.uiuc.edu/HDF5/.

Like ADF, HDF5 is a binary format, based on a tree structure, designed for the storage of
large quantities of scientific data in a platform-independent and randomly-accessible manner. Also
like ADF, HDF5 can be used to store any kind of data. The SIDS-to-HDF File Mapping Manual
describes the CGNS conventions governing the placement of CFD-specific data within the HDF5
format.

2.1.5 Standard Interface Data Structures

The Standard Interface Data Structures, usually abbreviated as “SIDS,” define the “intellectual
content” of CFD data. They detail the data which must be stored to completely characterize each
CFD entity. They describe, for example, what exactly is meant by a“grid”or a“boundary condition”.
They also establish a system of nomenclature which gives standard meaning to certain names, such
as “Density” and “SubsonicInflow”.

The SIDS description of the CFD data is hierarchical in nature, in that complex entities are
built up out of simpler ones. In the SIDS document, this is reflected in a syntax which uses C-like
structures to define the various entities. The result is a tree-like structure which maps naturally
onto the ADF format. Consequently, the File Mapping described by the current document exactly
parallels the SIDS. Thus in terms of basic structure, the Mapping itself summarizes the SIDS.
However, there are many conventions regarding the nomenclature and meaning of data which are
not summarized in the current document, and for these the SIDS is the authoritative document.

It is worth emphasizing that the SIDS may be regarded as a stand-alone definition of the data
associated with CFD, and that these data could be stored in any sufficiently general format, given
a mapping onto that format.

2.1.6 The SIDS-to-ADF File Mapping Manual

The SIDS-to-ADF File Mapping Manual specifies the exact manner in which, under CGNS
conventions, CFD data structures (the SIDS) are to be stored in, i.e., mapped onto, the file structure
provided by the ADF database manager. Adherence to the mapping conventions guarantees uniform
meaning and location of CFD data within ADF files, and thereby allows the construction of universal
software to read and write the data.

4

http://hdf.ncsa.uiuc.edu/HDF5/

2 CGNS Documentation

2.1.7 The SIDS-to-HDF File Mapping Manual

The SIDS-to-HDF File Mapping Manual is similar to the current document, and specifies the
mapping from the SIDS to the file structure provided by the HDF5 database manager.

The document describes the node level system, whereas the Mid-Level Library can be understood
as the tree level system. A description is given for every Mid-Level Library type, or sub-tree, in terms
of sets of atomic nodes. Moreover, it specifies the exact manner in which, under CGNS conventions,
CFD data structures (the SIDS) are to be mapped onto the data structures provided by the low
level layer (HDF5).

Some system-specific mechanisms, such as link management are detailed.1

Adherence to the mapping conventions guarantees uniform meaning and location of CFD data
within HDF5 files, and thereby allows the construction of universal software to read and write the
data.

2.1.8 The CGNS Mid-Level Library

The CGNS Mid-Level Library document describes a set of routines which store and retrieve the
CFD data objects defined in the SIDS. Their purpose is to provide CGNS compliant I/O without the
need for detailed programming in the ADF or HDF Core. These “mid-level routines” are designed
to be inserted directly into applications codes, such as flow solvers and grid generators.

2.2 Which Documents Do You Need?

Ideally, all users of the CGNS system will want to have all the documents available for reference.
However, many will find it possible to begin to use the system effectively without reading all the
documents beforehand. In fact, since the CGNS system is intended to minimize interaction with un-
derlying data structures, some users will find they need very little knowledge of the system’s internal
workings. We distinguish four classes of users who may wish to consult the CGNS Documentation.

2.2.1 Prospective Users

Prospective users are presumably unfamiliar with CGNS. They will probably wish to begin with
the Overview, or, if they require more detailed information, one or more of the various papers that
have been written describing CGNS. Beyond that, most will find a quick read of this file mapping
document (or the SIDS-to-HDF file mapping document) enlightening as to the logical form of the
contents of CGNS files. Browsing the figures in Appendix A of this document, as well as the SIDS
itself, will provide some feel for the scope of the system. The User’s Guide to CGNS, and the CGNS
Mid-Level Library document should give an indication of what might be required to implement
CGNS in a given application. Prospective users should probably not concern themselves with the
details of ADF or HDF.

1Please note that only the final representation of these links are relevant, in other words the sequence of HDF5
calls required to obtain such a representation is not important.

5

SIDS-to-ADF File Mapping Manual

2.2.2 End Users

The end user is the practitioner of CFD who generates the grids, runs the flow codes and/or
analyzes the results. For this user, CGNS provides a mechanism for accumulating the output of the
various processes related to CFD, e.g., grid generation and flow solution, and for making this output
available to subsequent processes or for archiving final results. For this user, a scan of the Overview
will sufficiently explain the overall workings of the system. This includes end user responsibilities for
matters not governed by CGNS, such as the maintenance of files and directories. The end user will
also find useful those portions of the SIDS which deal with standard nomenclature. AIAA 98-3007
may also be useful if more details about the capabilities of CGNS are desired.

The end user is, by definition, not involved in the building of CGNS-compliant applications code.

2.2.3 Applications Code Developers

The applications code developer builds or maintains code to support the various sub-processes
encountered in CFD, e.g., grid generation, flow solution, post-processing, or flow visualization. The
code developer must be able to install CGNS compliant I/O. The most convenient method for doing
so is to utilize the CGNS Mid-Level Library. The User’s Guide to CGNS is the starting point for
learning to use the Mid-Level Library to create and use CGNS files. The CGNS Mid-Level Library
document itself should also be considered essential. This library of routines will perform the most
common I/O operations in a CGNS-compliant manner. However, even when the CGNS Library
suffices to implement all necessary I/O, an understanding of the SIDS and the file mapping (either
SIDS-to-ADF or SIDS-to-HDF) will be useful. It will likely be necessary to consult the SIDS to
determine the precise meaning of the nomenclature.

2.2.4 CGNS System Developers

CGNS System development can be kept somewhat compartmentalized. Developers responsible
for the maintenance or building of supplements to the ADF or HDF Core, need not concern them-
selves with documentation other than the ADF User Guide or the HDF5 documentation. System
developers wishing to add to the CGNS Mid-Level Library will need all the documents. Theoretical
developments, such as extensions to the SIDS, may possibly be undertaken with a knowledge of the
SIDS alone, but such contributions must also be added to the SIDS-to-ADF and SIDS-to-HDF file
mappings before they can be implemented.

2.3 How to Use This Document

Those wishing to do more than simply browse this document will find that the detailed informa-
tion begins with the Summary of ADF in Section 4, and continues with the General File Mapping
Concepts in Section 5. The detailed textual node descriptions in Section 6 are more useful as refer-
ence than as sequential literature. The best overall technical view of the layout of CGNS files can
be acquired by reference to the figures in Appendix A.

6

3 CGNS Background

The information in this section is supplied for the sake of completeness. It is identical with the
information found in the Overview.

3.1 Purpose

The purpose of CGNS is to provide a standard for recording and recovering computer data
associated with the numerical solution of the equations of fluid dynamics. The format implemented
by this standard is (1) general, (2) portable, (3) expandable, and (4) durable.

The CGNS system consists of a collection of conventions, and software implementing those con-
ventions, for the storage and retrieval of CFD (computational fluid dynamics) data. The system
consists of two parts: (1) a standard format for recording the data, and (2) software that reads,
writes and modifies data in that format. The format is a conceptual entity established by the doc-
umentation; the software is a physical product supplied to enable developers to access and produce
data recorded in that format. The CGNS standard, applied through the use of the supplied software,
is intended to do the following:

• facilitate the exchange of CFD data

– between sites.
– between applications codes.
– across computing platforms.

• stabilize the archiving of CFD data.

3.2 Participation and Brief History

The CGNS project originated around 1994–1995 through a series of meetings between Boeing and
NASA that addressed improved means for transferring NASA technology to industrial use. It was
held that a principal impediment to technology transfer was the disparity in I/O formats employed
by various flow codes, grid generators, and so forth. The CGNS system was conceived as a means
to promote “plug-and-play” CFD.

Agreement was reached to develop CGNS at Boeing, under NASA Contract NAS1-20267, with
active participation by a team of CFD researchers from

• NASA Langley Research Center
• NASA Glenn Research Center
• NASA Ames Research Center
• Boeing St-Louis (McDonnell-Douglas Corporation).
• Boeing Commercial Airplane Group Aerodynamics
• Boeing Commercial Airplane Group Propulsion
• ICEM CFD Engineering Corporation of Berkeley, California

Also participating in the discussions at various times have been researchers from

• Defense and Space Group and Environmental Systems
• Arnold Engineering Development Center, representing the NPARC Alliance
• Wright-Patterson Air Force Base

7

SIDS-to-ADF File Mapping Manual

3.3 Scope

The principal target of CGNS is the data normally associated with compressible viscous flow
(i.e., the Navier-Stokes equations), but the standard is also applicable to subclasses such as Euler
and potential flows.

CGNS Version 1.0, released 5/15/98, was limited to problems described by multiblock structured
grids. Version 1.1 addresses grids, flowfields, boundary conditions, and block-to-block connection
information. Also included are a number of auxiliary items, including nondimensionalization, refer-
ence state, and equation set specifications. The extension to time-dependent flows and unstructured
grids is addressed in Version 2. Also included are links between CGNS data and CAD geometry.
Any mix of the following types of field data can be recorded:

• nodal.
• edge-centered.
• face-centered.
• cell-centered.

Block connections can be of the following types:

• contiguous (one-to-one).
• abutting (patched mismatched).
• overlapping (Chimera).

Much of the standard and the software is applicable to computational field physics in general.
Disciplines other than fluid dynamics would need to augment the data definitions and storage con-
ventions, but the fundamental database software, which provides platform independence, is not
specific to fluid dynamics.

8

4 Summary Description of ADF (Advanced Data Format)

The purpose of the current document is to describe the way in which CFD data is to be stored
in an ADF file. To do this, it is necessary to first describe the structure of the ADF file itself in
some detail. Therefore, a conceptual summary of ADF is given here in order to make the current
document relatively independent, and to allow the reader to focus on those aspects of ADF which
are essential to understanding the file mapping. The ADF User’s Guide should be used as the
authoritative reference to resolve any issues not covered by this summary.

4.1 General Description of ADF

The ADF, or Advanced Data Format, together with its access software known as the ADF Core,
constitutes a general database manager particularly suited to the storage of numerical data. Its use
is not restricted to data connected with CFD, and ADF contains no built-in references to concepts
from CFD.

4.1.1 ADF Files and the ADF Core

Files created by the ADF Core are referred to as ADF files. These are binary files whose precise
physical form on the external storage medium is completely controlled by the Core routines. ADF
files are not intelligible or accessible except through the ADF Core routines, and their physical form
is of interest only to ADF Core programmers.

The ADF Core routines perform typical operations on ADF files: open, close, create, delete, read,
write, and so on. They are written in ANSI C and are thus themselves portable to any platform
supporting an ANSI C compiler. Because the Core completely determines the physical form of the
ADF files, the files themselves can be read on those platforms as well.2 In addition to portability,
this arrangement provides integrity of data across both space and time. In particular, it is never
necessary to know more about an ADF file (other than that it is one) in order to open it and find
out what it contains.

The ADF Core implements the minimal set of procedures required to fully manipulate the
database. The Core itself is written in C, but each Core call is also provided in Fortran. This
enables the user to access ADF data from either of these languages.

4.1.2 The Conceptual Structure of ADF Files

Although the physical structure of an ADF file in storage is (or should be) of little concern to
users of ADF, an understanding of its logical or conceptual structure is essential. This structure
determines its suitability for the type of data at hand and is reflected in all of the ADF Core calling
sequences.

An ADF file consists entirely of a collection of elements called nodes. These nodes are arranged in
a tree structure which is logically similar to a UNIX file system. The nodes are said to be connected
in a “child-parent” relationship according to the following simple rules:

1. Each node may have any number of child nodes.
2There are necessarily some issues relating to the retention of precision on platforms of varying word length.

9

SIDS-to-ADF File Mapping Manual

2. Except for one node, called the root, each node is the child of exactly one other node, called
its parent.

3. The root node has no parent.

Every node in an ADF file has exactly the same internal structure. Each node contains identifying
information, pointers to any children, and, optionally, data.

When an ADF file is opened (by the appropriate Core routine), information is returned to the
calling program which is sufficient to access the root node. It is then the responsibility of the program
to search the tree for whatever information is required, or to add to the tree any information it wishes
to store.

There is a special kind of node called a link, which serves as a pointer to a node in another ADF
file, or in another part of the same ADF file. The tree structure at and below the node to which
the link points is available as if that node were present instead of the link. This allows an ADF file
to span multiple physical files, and also allows a portion of one ADF file to be referenced by several
other ADF files.

4.1.3 The ADF Mid-Level Library (projected)

The ADF Core routines access the data at a very fundamental level. Since by definition the
Core implements a minimum number of basic functions, it necessarily deals with the data at a very
fundamental level. While skilled programmers may find this acceptable, most programs define higher
level routines which coalesce oft-repeated sequences of Core calls. We envision that these routines
will eventually be gathered into an ADF “Mid-Level” Library.

At this time, there are approximately four such routines. However, there has been no coordinated
effort to gather, organize, or distribute such a Library.

(These remarks apply only to routines designed to access general ADF data. There does exist a
set of higher level routines used to access CFD related data, namely, the CGNS Mid-Level Library.)

4.2 The Structure of an ADF Node

The File Mapping specifies not only the location of the node at which a particular kind of data
is to be stored, but also how the internal structure of the node is to be used. Each node contains a
number of fields into which data may be entered directly via ADF Core calls. They are:

• The Node Name
• The Label
• The Data Type
• The Number of Dimensions
• The Dimension Values
• The Data

In addition, two other entities associated with the nodes are managed by ADF itself. These are:

• The Node ID
• The Child Table

10

4 Summary Description of ADF (Advanced Data Format)

4.2.1 The Node ID

The node ID is a unique identifier assigned to each existing node by ADF when the file containing
it is opened, and to new nodes as they are created. ADF Core inquiries generally return node IDs as
a result and accept node IDs as input. By building a table of IDs, calling software can subsequently
access specific nodes without further search. The Node ID is real and is not under user control.

4.2.2 The Node Name

The node Name is a 32-byte character field which is user controllable. Its general use is to
distinguish among the children of a given node; consequently, no two children of the same parent
may have the same Name.

4.2.3 The Label

The Label is a 32-byte character field which is user controllable. ADF assigns no formal role to
the Label, but the intent was to identify the structure of the included data. It is common for the
various children of a single parent to store different instances of the same structure. Therefore, there
is no prohibition against more than one child of the same parent having the same Label.

4.2.4 The Data Type

The Data Type is a 32-byte character field which specifies the type and precision of any data
which is stored in the data field. Types provided by ADF are:

Table 1: Data Types

Data Type Notation

No Data MT

Integer 32 I4

Integer 64 I8

Unsigned Integer 32 U4

Unsigned Integer 64 U8

Real 32 R4

Real 64 R8

Complex 64 X4

Complex 128 X8

Character C1

Byte B1

Link LK

If the data type is MT or LK, the node attributes which described the data may be left undefined.

11

SIDS-to-ADF File Mapping Manual

4.2.5 The Number of Dimensions

The Data portion of a node is designed to store multi-dimensional arrays of data, each element
of which is presumed to be of the Data Type specified. The Number of Dimensions specifies the
number of integers required to reference a single datum within the array.

4.2.6 The Dimension Values

The Dimension Values are a list of integers expressing the actual sizes of the stored array in each
of the dimensions specified.

4.2.7 The Data

The portion of the node holding the actual stored data array.

4.2.8 The Child Table

ADF maintains a table recording the number of, and pointers to, the children of each node. The
table is adjusted when children are added or deleted by ADF Core calls.

Children may be identified by their names and labels, and, thence, by their node IDs once these
have been determined. ADF provides no notion of order among children. In particular, the order
of a list of children returned by ADF has nothing to do with the order in which they were inserted
in the file. However, the order returned is consistent from call to call provided the file has not been
closed and the node structure has not been modifed.

Note that there is no parent table; that is, a node has no direct knowledge of its parent. Since
calling software must open the file from the root, it presumably cannot access a child without having
first accessed the parent. It is the responsibility of the calling software to record the node ID of the
parent if this information will be required.

12

5 General CGNS File Mapping Concepts

This section describes the general philosophy underlying the use of the ADF tree structure by
CGNS. Section 6 describes the exact conventions for each type of data.

In Section 5.1, we first describe the roles of the various ADF node attributes as they are specifi-
cally applied within CGNS. Section 5.3 describes the overall layout of the tree structure itself.

5.1 Use of ADF Nodes in CGNS

Section 4.2 described the general role of each of the ADF node attributes without reference to
CFD. Here we note any additional information regarding their use within CGNS.

Attributes described in 5.1.1 through 5.1.8 are those recognized by both ADF and CGNS. In
5.1.9 through 5.1.11 we describe certain attributes of nodes which are derived from context, i.e.,
which the node possesses by virtue of its location within a CGNS database. These notions, namely,
Cardinality, Parameters and Functions, are unique to CGNS.

5.1.1 The Node ID

The Node ID is completely controlled by ADF, and thus its role is exactly the same for CGNS as
it is for ADF. CGNS software accesses the Node ID only through calls to ADF. ADF itself guarantees
that Node IDs are unique and constant within any ADF file (or collection of files) while the file(s)
are open.

5.1.2 The Node Name

In CGNS, the Name may be left to the choice of the user, or it may be specified by the SIDS. At
the levels of the tree nearest the root, the (end-)user is free to set the Name to distinguish among like
objects in the case at hand. For example, in a multizone problem, nodes associated with different
zones might be named “UnderLeftWing” or “AboveForwardFuselage”. At this level, it is generally
not possible to identify a collection of names which are likely to recur. This means that the naming
of high level objects does not require standardization, and the SIDS are silent regarding the naming
convention.

Because every ADF node must be given a name when it is opened, default names, based on the
node Label, are provided by convention. The CGNS Midlevel Library will record the default names
if none is provided by the user. The precise formula is given in the Label section below.

At levels of the tree farther from the root, the SIDS often specify the name. There is, for
example, a commonly encountered collection of flow variables whose general meaning is widely
understood. In this case, standardizing the name conveys precise information. Thus the SIDS
specify, for instance, that a node containing static internal energy per unit mass should have the
Name “EnergyInternal”. Adherence to these naming conventions guarantees uniform meaning of
the data from site to site and user to user. Of course, there may be a desire to store quantities for
which no naming convention is specified. In this case any suitable name can be used, but there is
no guarantee of proper interpretation by anyone unaware of the choice.

13

SIDS-to-ADF File Mapping Manual

5.1.3 The Label

Within CGNS, nearly all labels reflect C-style type definitions (“typedefs”) specified by the SIDS,
and end in the characters“_t”. Some“Leaf”nodes (i.e. nodes that have no children) do not represent
higher level CGNS structures and therefore have labels that do not follow the “_t” convention. At
this writing, all such nodes have the type int[], i.e., integer array, a type already recognized in
C, for which a separate type definition would be artificial. Such nodes are generally located by the
software through their names, which are specified by the SIDS, rather than through their labels.

The Label generally indicates the role of the data at and below the node in the context of CFD.
Nodes which are entry points to data for a particular zone, for example, have the Label “Zone_t”.

Parent nodes often have a number of children each containing data for different instances of
the same structure. Multiple children of the same parent therefore often have the same Label. It
is customary for software to conduct searches which depend on the Label, e.g., to determine the
number of zones in a problem. The software will fail if the conventions regarding Labels are not
observed.

Labels are also used to build default node Names. These are derived from the Label by dropping
the characters “_t” and substituting the smallest positive integer resulting in a unique name among
children of the same parent. For example, the first default Name for a node of type Zone_t will be
“Zone1”; the second will be “Zone2”; and so on.

5.1.4 The Data Type

Data Types are completely specified by the file mapping. Although ADF provides a number of
types, in CGNS the only types used are MT (No Data), I4 (Integer), R4 and R8 (Real), C1 (Character),
and LK (Link).

The specification of data types within the File Mapping allows for the probability that files
written under different circumstances may differ in precision. The issue is complicated by the ability
of ADF to sense the capabilities of the platform on which it is running and interpret or record data
accordingly. The general rule is that, although the user of ADF can specify the precision in which it
is desired to read or write the data, ADF knows both the precision available at the source and the
precision acceptable to the destination and will mitigate accordingly. Thus to specify the precison
of real data as R4, for example, has no meaning unless both R4 and R8 are available. Therefore, the
generic specification “DataType” is used to allow for all possibilities.

For all integer data specified by the SIDS, I4 provides sufficient precision. Since ADF software
handles conversion to the external environment, all integer data is specified by the File Mapping as
I4.

5.1.5 The Number of Dimensions

Whenever data is stored at a node, it is in the form of a single array of elements of a single date
type. Insofar as possible, the dimension specified by CGNS is the natural underlying dimension; for
example, a rectangular array of pressures is stored with dimension equal to the physical dimension
of the problem.

There are situations in which this representation is not feasible. For instance, a list of points
which do not form a rectangular array in physical space may be compacted into a one-dimensional
array in ADF.

14

5 General CGNS File Mapping Concepts

Frequently the data is of type C1 (character data). In some cases, the data holds additional
information in the form of a name specified by the SIDS, and in some cases holds user comment.
All such data is generally represented as a one-dimensional array (or list) of characters.

5.1.6 The Dimension Values

These are used exactly as specified by ADF. In the case of rectangular arrays of physical data,
the dimension values are set to the actual sizes in physical space. Note that these sizes often depend
on whether the values are associated with grid nodes, cell centers or other physical locations with
respect to the grid. In any event, they refer to the amount of data actually stored, not to any larger
array from which it may have been extracted.

In the case of list data, the dimension value is the length of the list. Lists of characters may
contain termination bytes such as “\n”; by this means an entire document can be stored in the data
field.

5.1.7 The Data

CGNS imposes no conventions on the data itself beyond those specified by ADF. Note that it
is a responsibility of the CGNS software to ensure that the amount and type of stored data agrees
with the specification of the data type, number of dimensions, and dimension values.

5.1.8 The Child Table

The Child Table is completely controlled by ADF, and thus its role is exactly the same for CGNS
as it is for ADF. CGNS software accesses and modifies the child table only through calls to ADF.

In addition to the meaning of attributes of individual ADF nodes, the File Mapping specifies
the relations between nodes in a CGNS database. Consequently, the File Mapping determines what
kinds of nodes will lie in the child table.

It is important to reemphasize that ADF provides no notion of order among children. This means
children can be identified only by their names, labels and system-provided node IDs. In particular,
the order of a list of children returned by ADF has nothing to do with the order in which they were
inserted in the file. However, the order returned is consistent from call to call provided the file has
not been closed and the node structure has not been modifed.

5.1.9 Cardinality

The cardinality of a CGNS node is the number of nodes of the same label permitted at one point
in the tree, i.e., as children of the same parent. It consists of both lower and upper limits.

Since the notion of a CGNS database allows for work in progress, the lower limit is generally
zero (although the database may be of little use until certain nodes are filled). The upper limit is
usually either one or many (N).

5.1.10 Parameters

CGNS relies on the fact that ADF nodes cannot be found except by following the pointers from
their parents. This means that software accessing a node has had an opportunity to note all the

15

SIDS-to-ADF File Mapping Manual

data above that node in the tree. Therefore, nodes do not repeat within themselves information
which is necessary for their interpretation but which is available at a higher level.

A datum which is necessary for the proper interpretation of a node but which is derived from its
ancestors is referred to as a structure parameter.

5.1.11 Functions

Occasionally the proper interpretation of a node depends on an implicitly understood function
of its structure parameters. Usually these relate to the actual amount of data stored. Several of
these functions are defined in the SIDS and referenced in this document.

5.2 CGNS Databases

5.2.1 Definition of a CGNS Database

By definition, a CGNS database is created when, within an ADF file, a node is created which
conforms to the specifications given below for a node of type“CGNSBase_t”. This node is conceptually
the root of the CGNS database. Because it is created and controlled by the user, it cannot be the
root of the ADF file. Current CGNS conventions require that it be located directly below the ADF
root node.

Further, by the mechanism of links, a CGNS database may span multiple files. Thus there is no
notion of a CGNS file, only of a CGNS database implemented within one or more ADF files.

By virtue of its intended use, a CGNS database is dynamic in that its content at any time
reflects the current state of a CFD problem of interest. For example, after the completion of a
grid generation procedure, a CGNS file may contain a grid but no boundary conditions. Therefore,
beyond the occurrence of a CGNSBase_t node, there is no minimum content required in a CGNS
database.

Conversely, there is no proscription against the inclusion, anywhere within an ADF file containing
a CGNS database, of nodes of any form whatsoever, provided only that their naming and labeling
does not mimic CGNS conventions. Such “non-CGNS” nodes, and those below them in the ADF
tree, are not regarded as part of the CGNS database. CGNS software will not detect the existence
of non-CGNS nodes.

We may therefore take the following as a definition of a CGNS database:

A CGNS database is a subtree of an ADF file or files which is rooted at a node with
label “ CGNSBase_t” and which conforms to the SIDS data model as implemented by the
SIDS-to-ADF File Mapping.

5.2.2 Location of CGNS Databases within ADF Files

An ADF file may contain more than one CGNSBase_t node; i.e., there may be more than one
CGNS database rooted within the same ADF file. CGNS software accepts the name of the desired
database as an argument, and will locate the correct CGNSBase_t node within the specified ADF
file. Obviously, each CGNSBase_t node in a single ADF file must have a unique name.

A CGNS database may link to CGNS nodes in the same or other ADF files. Thus, for example,
a CGNS database may reference the grid from another CGNS database without physically copying

16

5 General CGNS File Mapping Concepts

the the information. In this case, the structure of the ADF file into which the link is made is invisible
except below the node to which the link is made.

5.2.3 File Management

Beyond Open and Close neither ADF nor CGNS provides any file management facilities. The
user is responsible for ensuring that:

• The ADF file containing the root of the required database is available and its permissions are
properly set at runtime.

• If links are made to other ADF files, including any not under the user’s direct control, these
are also available at runtime.

• No file is opened for writing by more than one program at a time.

It is possible, within CGNS, to protect files from inadvertent writing by opening them as “read
only”.

5.3 Internal Organization of a CGNS Database

5.3.1 The CGNSBase_t Node

At the highest level of the tree defining a CGNS database there is always a node labeled
“CGNSBase_t”. The name of this node is user defined, and serves essentially as the name of the
database itself. This name is used by the CGNS software to open the database.

5.3.2 The CGNSLibraryVersion_t Node

An ADF file may also contain other nodes below the root node beside CGNSBase_t, but these are
not officially part of the CGNS database and will not be recognized by most CGNS software. One
exception to this is a node called CGNSLibraryVersion_t, which is a child of the ADF root node.
This node stores the version number of the CGNS standard with which the file is consistent, and
is created automatically when the file is created or modified using the CGNS Mid-Level Library.
Officially, the CGNS version number is not a part of the CGNS database (because it is not located
below CGNSBase_t). But because the Mid-Level Library software makes use of it, the node is included
in this document.

5.3.3 Topological Basis of CGNS Database Organization

Below the root, the organization of a CGNS database reflects the problem topology. Omitting
detail, Figure 1, Appendix A shows the overall structure of the ADF file. Below the ADF root node
is the CGNSLibraryVersion_t node, and one or more CGNSBase_t nodes. Each CGNSBase_t node is
the root of a CGNS database.

At the next level below a CGNSBase_t node are general specifications which apply to the problem
globally, such as reference states, units, and so on. At this level we also find a collection of nodes
labeled “Zone_t”. The tree below each of these holds all the data local to one of the various zones
or subdomains which constitute the problem.

17

SIDS-to-ADF File Mapping Manual

Beneath each Zone_t node there are nodes whose subtrees store: the grid (labeled GridCo-
ordinates_t); flowfields (FlowSolution_t); boundary conditions (ZoneBC_t); information about
the geometrical connection to other zones (GridConnectivity_t); and information defining time-
dependent data. Below these there may be additional nodes containing yet more geometrically local
information. For example, under the ZoneBC_t node there are nodes defining individual boundary
conditions on portions of faces of the zone (BC_t).

Certain types of nodes originally specified at a high level are optionally repeated below. For
example, immediately below a Zone_t node we may find another ReferenceState_t node (see
Appendix A, Figure 4). The CGNS convention is that such a node overrides (for the associated
portion of the topology only) any data found at a higher level.

5.3.4 Topics Not Currently Covered

No specification of the kind represented by this file mapping can ever be complete. However, it
is worth noting that there are certain entities common in CFD which are not currently specified by
the file mapping.

Within nodes of type FlowSolution_t, the current file mapping permits the storage of fields of
any number of dependent variables. In addition to those whose names are specified in the SIDS
the user may add any desired quantities, naming them appropriately. Names that are not currently
codified in the SIDS will not be common between practitioners without separate communication.

Obviously any sort of physical field could be stored in a FlowSolution_t node. The problem
with using CGNS for such applications lies in the probable need to specify additional physical
information. Standardizing this information is tantamount to extending the SIDS and File Mapping
to the disciplines in question.

Similarly, if a reacting flow problem requires the specification of rate tables or catalytic wall
boundary conditions, extensions to the SIDS and File mapping will be needed.

18

6 Detailed CGNS Node Descriptions

This section, together with the figures in Appendix A, constitutes a complete description of the
CGNS database structure, together with detailed descriptions of the contents of each attribute of
each node. It is intended to be suitable as a reference for anyone implementing CGNS using the
ADF Core, but should also be of interest to those wishing to understand exactly where information
is stored within a CGNS database.

Note that it is the advertised purpose of the CGNS Mid-Level Library to store and retrieve
information in conformity with the mapping herein described. Therefore, anyone accessing a CGNS
database through the CGNS routines alone does not need a detailed understanding of the file mapping
per se. However, this document should still prove useful in ascertaining the meaning of some of the
arguments which must be supplied to the Library routines. Further, it will be necessary to consult
the SIDS themselves to determine some of the naming conventions.

The node descriptions in this section are closely coupled to and cross-referenced with the figures
in Appendix A, which show all the nodes defined in the SIDS that have child nodes. In the current
section, the “Children:” entry in the list of Node Attributes is a reference to the figure showing that
node with its children.

The nodal hierarchy of the CGNS database directly reflects that of the SIDS. Certain sections of
the SIDS, notably Sections 4, 5, and 12, describe basic data structures which appear repeatedly as
children of nodes representing more complex structures. In order to simplify the presentation and
avoid the introduction of undefined terms, this section has been divided into two parts. Section 6.1
defines a number of basic types which recur often in the structure, and Section 6.2 describes higher
level nodes of more specific function built from those in Section 6.1.3

6.1 Basic CGNS Nodes

In this section we describe CGNS nodes which hold fundamental types of information. Their
structure and function, which are the same everywhere, are described here. However, the meaning
of the data they hold at any particular point in a CGNS database depends on the context, i.e., the
parent node. Therefore, where necessary, any special context-dependent meaning is elaborated in
the paragraph devoted to the parent.

6.1.1 Descriptor Group

These are user-assigned nodes designed to further describe the user’s intent. Their data is meant
for human perusal or other user-designated purposes.

6.1.1.1 Descriptor_t

The purpose of a node of type Descriptor_t is to store textual data. It is not intended to be
read by any system software, except to return the text for human examination.

The intent of the Descriptor_t node is to hold comment sufficient to allow someone other than
the originator to understand what the node contains. This may consist of a problem description,
reference documents, personal notes, etc.

3For convenience, we group the node descriptions according to the type of data the nodes contain. These groupings
only roughly correspond to the chapters in the SIDS.

19

SIDS-to-ADF File Mapping Manual

Any node may have zero to many Descriptor_t children, with the uses differentiated by the
Name field. At this time, there are no conventions for these names or for the form of the associated
text. It is expected that a standard set such as README, TimeStamp, etc. will evolve as a matter of
practice.

Node Attributes

Name: User defined
Label: Descriptor_t
DataType: C1
Dimension: 1
Dimension Values: Length of string to be stored, including any carriage control or null

bytes.
Data: String - Since line terminators can be stored within the data, the user

could conceptually store an entire document in this area, read it into
a program and then print it out. For example, an entire PostScript
document describing the problem (and maybe results) could be stored
in the Data field, read by a program and then sent to a printer.

Children: None
Cardinality: 0,N

6.1.1.2 Ordinal_t

Because there is no notion of order among children, there is occasionally a desire to order children
in a way that survives from one opening of a CGNS database to another. The current CGNS Library
provides means of doing this. However, another early method was to place the node “number” in a
child of type Ordinal_t.

Like Descriptor_t, the Ordinal_t node is completely under the control of the user, who takes
full responsibility for its content. Unlike Descriptor_t, CGNS conventions do not encourage the
use of Ordinal_t, as it usually encodes information which is redundant with the name. It is not
read or written by standard CGNS software, and so there is no assurance that sibling nodes will
be differently, consecutively, or consistently numbered by Ordinal_t. Clearly, if Ordinal_t must
be used, no node should have more than one Ordinal_t child, and no two siblings should have
Ordinal_t children containing the same data.

It is worth noting that, if consistent numbering is desired, one way of achieving it is to make the
desired integer either the name or part of the name. In fact, if, for example, individual zones are
left unnamed, the default convention will provide names of Zone1, Zone2, etc. Alternatively, the
character strings “1”, “2”, . . . , are legal names. ADF or CGNS software, of course, will return these
as strings. This may necessitate type conversion or parsing before the names can be used as integer
indices.

Node Attributes

Name: Ordinal
Label: Ordinal_t
DataType: I4
Dimension: 1
Dimension Values: 1
Data: The user-defined ordinal number (an integer).
Children: None
Cardinality: 0,1

20

6 Detailed CGNS Node Descriptions

6.1.2 Physical Data Group

6.1.2.1 DataClass_t

A DataClass_t node specifies the dimensional nature of the data in and below its parent. It
overrides any DataClass_t information higher up in the tree. There are six recognized string values.
It is necessary to consult the SIDS to determine the precise meaning.

Node Attributes

Name: DataClass
Label: DataClass_t
DataType: C1
Dimension: 1
Dimension Values: The length of the string
Data: One of: DataClassNull, DataClassUserDefined, Dimensional,

NormalizedByDimensional, NormalizedByUnknownDimensional,
NondimensionalParameter, or DimensionlessConstant

Children: None
Cardinality: 0,1

6.1.2.2 DimensionalUnits_t

A DimensionalUnits_t node specifies dimensional units which apply to data in and below its
parent. It overrides any DimensionalUnits_t information higher up in the tree. There are five
strings to specify, corresponding, respectively, to units for mass, length, time, temperature, and
angular measure. The number of recognized string values varies with the physical property.

Units for three additional types of data are specified in a child node, AdditionalUnits_t.

Node Attributes

Name: DimensionalUnits
Label: DimensionalUnits_t
DataType: C1
Dimension: 2
Dimension Values: (32,5)
Data: For mass, one of: MassUnitsNull, MassUnitsUserDefined,

Kilogram, Gram, Slug, Pound-Mass
For length, one of: LengthUnitsNull,

LengthUnitsUserDefined, Meter,
Centimeter, Millimeter, Foot, Inch

For time, one of: TimeUnitsNull, TimeUnitsUserDefined,
Second

For temperature, one of: TemperatureUnitsNull,
TemperatureUnitsUserDefined, Kelvin,
Celsius, Rankine, Fahrenheit

For angles, one of: AngleUnitsNull,
AngleUnitsUserDefined, Degree, Radian

Children: See Figure 40
Cardinality: 0,1

21

SIDS-to-ADF File Mapping Manual

6.1.2.3 AdditionalUnits_t

An AdditionalUnits_t node specifies dimensional units for additional types of data. To main-
tain compatibility with earlier CGNS versions, this is an optional child node of DimensionalUnits_t.
The specified units apply to data in and below the parent of the corresponding DimensionalUnits_t
node, and override any AdditionalUnits_t information higher up in the tree. There are three strings
to specify, corresponding, respectively, to units for electric current, substance amount, and luminous
intensity. The number of recognized string values varies with the physical property.

Node Attributes

Name: AdditionalUnits
Label: AdditionalUnits_t
DataType: C1
Dimension: 2
Dimension Values: (32,3)
Data: For electric current, one of: ElectricCurrentUnitsNull, Elec-

tricCurrentUnitsUserDefined,
Ampere, Abampere, Statampere,
Edison, auCurrent

For substance amount, one of: SubstanceAmountUnitsNull, Sub-
stanceAmountUnitsUserDefined,
Mole, Entities,
StandardCubicFoot,
StandardCubicMeter

For luminous intensity, one of: LuminousIntensityUnitsNull,
LuminousIntensityUnitsUserDe-
fined, Candela, Candle, Carcel,
Hefner, Violle

Children: None
Cardinality: 0,1

6.1.2.4 DataConversion_t

A DataConversion_t node specifies a non-homogeneous linear function which converts non-
dimensional data in its parent to raw dimensional data. Although in principle it overrides any
DataConversion_t information higher up in the tree, it is generally not meaningful for it to apply
to more than one kind of physical data. Therefore, CGNS specifies its use only as a child of a node
which actually contains a single type of real data.

There are two values to specify, corresponding to the scale factor and offset. The SIDS contain
the exact conversion formula.

Node Attributes

Name: DataConversion
Label: DataConversion_t
DataType: R4 or R8
Dimension: 1
Dimension Values: 2
Data: ConversionScale, ConversionOffset
Children: None
Cardinality: 0,1

22

6 Detailed CGNS Node Descriptions

6.1.2.5 DimensionalExponents_t

A DimensionalExponents_t node specifies the powers of mass, length, time, temperature, and
angular measure which characterize dimensional data in its parent. Although in principle it overrides
any DimensionalExponents_t information higher up in the tree, it is generally not meaningful for
it to apply to more than one kind of physical data. Therefore, CGNS specifies its use only as a
child of a node which actually contains a single type of real data. There are five values to specify,
corresponding to the five types of units specified using DimensionalUnits_t. The data type is real,
not integer.

Exponents for three additional types of data are specified in a child node, AdditionalExpo-
nents_t.

Node Attributes

Name: DimensionalExponents
Label: DimensionalExponents_t
DataType: R4 or R8
Dimension: 1
Dimension Values: 5
Data: MassExponent, LengthExponent, TimeExponent,

TemperatureExponent, AngleExponent
Children: See Figure 41
Cardinality: 0,1

6.1.2.6 AdditionalExponents_t

An AdditionalExponents_t node specifies the powers of the units for additional types of data,
which characterize the corresponding dimensional data. There are three values to specify, corre-
sponding to the three types of units specified using AdditionalUnits_t. The data type is real, not
integer.

Node Attributes

Name: AdditionalExponents
Label: AdditionalExponents_t
DataType: R4 or R8
Dimension: 1
Dimension Values: 3
Data: ElectricCurrentExponent, SubstanceAmountExponent,

LuminousIntensityExponent
Children: None
Cardinality: 0,1

6.1.2.7 DataArray_t

A DataArray_t node is a very general type of node meant to hold large arrays of data, such as
grids and flowfields. Often, some of the attributes of a DataArray_t node depend on the context in
which the node is found; that is, they are structure parameters.

For example, the SIDS specify that the Data Type of DataArray_t is a structure parameter,
“DataType”, which may assume any of the values “In ”, “Rn ”, “Cn ”, or “bit”.

The other two attributes of DataArray_t, Dimensions and DataSize, also depend on the context
where they are being used. Dimensions is a function of the underlying dimensionality of the data

23

SIDS-to-ADF File Mapping Manual

being described (often IndexDimension, defined in the CGNSBase_t node), and the DataSize may
be inferred from detailed descriptions of the grid.

A node may have any number of DataArray_t children. The meaning of their contents is dif-
ferentiated by Name, often according to conventions specified by the SIDS. SIDS names are usually
precise and descriptive, such as CoordinateTheta or EnergyInternal. (For a current list of sanc-
tioned names, see the SIDS, Appendix A.) Conversely, quantities not specified by the SIDS can be
stored in DataArray_t nodes, but should be given names other than those specified in the SIDS. In
other words, to comply with the SIDS requires that one give a quantity the SIDS-defined name if
and only if it is one of the SIDS-defined quantities.

Node Attributes

Name: Context dependent
Label: DataArray_t
DataType: Context dependent
Dimension: Context dependent
Dimension Values: Context dependent
Data: The array of data values
Children: See Figure 39
Cardinality: 0,N
Parameters: DataType, dimension of the data, size of the data

6.1.2.8 Integer Arrays

Integer array nodes perform the same function as nodes of type DataArray_t, but store integer
instead of real arrays. They are always of type int[], with the dimensions and values given either
explicitly in the appropriate fields, or as parameters or functions.

Node Attributes

Name: Context dependent
Label: int, int[IndexDimension], int[2*IndexDimension], or int[1 +

... + IndexDimension]
DataType: I4
Dimension: 1
Dimension Values: 1, IndexDimension, 2*IndexDimension, or (1 + ... +

IndexDimension)
Data: The array of integer values
Cardinality: 0,1
Children: None
Parameters: IndexDimension or none (context dependent)

6.1.3 Location and Position Group

6.1.3.1 GridLocation_t

A GridLocation_t node specifies the physical location, with respect to the underlying grid, with
which the field data below its parent is associated. The value (data field) is a character string of
enumeration type, i.e., it must take one of a number of predefined values. These values are: Vertex,
CellCenter, FaceCenter, IFaceCenter, JFaceCenter, KFaceCenter, or EdgeCenter. The strings
are case sensitive, and an exact match is required. The GridLocation_t node is optional, and the
default is Vertex.

24

6 Detailed CGNS Node Descriptions

Node Attributes

Name: GridLocation
Label: GridLocation_t
DataType: C1
Dimension: 1
Dimension Values: Length of the string value
Data: Vertex, CellCenter, FaceCenter, IFaceCenter, JFaceCenter,

KFaceCenter, or EdgeCenter
Children: None
Cardinality: 0,1

6.1.3.2 Rind_t

The presence of a Rind_t node indicates that field data stored below its parent includes values
associated with a spatial extent beyond that of the basic underlying grid. Such data often arise from
the use of ghost cells, or from the copying of information from adjacent zones.

Within a single zone, the size of the basic grid is found in the data field of the Zone_t node (see
Section 6.2.8.1). The data field of a Rind_t node contains integers specifying the number of planes
(for structured grids) or number of rind points or elements (for unstructured grids) of included extra
data. The planes for structured grids correspond to the low and high values in the i-direction, low
and high values in the j-direction, and low and high values in the k-direction (if needed), in that
order. Note that the actual size of the field data, which is stored in a DataArray_t sibling node, is
a DataSize structure parameter which depends on the basic grid size, the GridLocation, and the
Rind.

The Rind_t node is optional, and the default is no rind.

Node Attributes

Name: Rind
Label: Rind_t
DataType: I4
Dimension: 1
Dimension Values: 2*IndexDimension
Data: Number of planes of extra data in low i, high i, low j, high j, etc.

(for structured grids) or number of points or elements of extra data (for
unstructured grids)

Children: None
Cardinality: 0,1
Parameters: IndexDimension

6.1.3.3 IndexRange_t

An IndexRange_t node describes a subregion of a zone. This may be, for example, a sub-block
or a portion of a face of a zone. It may be used to describe the locations of boundary condition
patches and holes for overset grids.

Node Attributes

Name: PointRange, PointRangeDonor, ElementRange, or user defined
Label: IndexRange_t
DataType: I4
Dimension: 2

25

SIDS-to-ADF File Mapping Manual

Dimension Values: IndexDimension, 2
Data: First indices, last indices
Children: None
Cardinality: Context dependent
Parameters: IndexDimension

6.1.3.4 IndexArray_t

An IndexArray_t node describes a general subregion of a zone. Unlike IndexRange_t, it lists
all the elements of the subregion, rather then only the first and last ones. Its use is similar to
IndexRange_t.

Node Attributes

Name: PointList, PointListDonor, CellListDonor, or InwardNormalList
Label: IndexArray_t
DataType: I4, or (for InwardNormalList) R4 or R8
Dimension: 2
Dimension Values: IndexDimension, number of items in the list; or (for

InwardNormalList) PhysicalDimension, number of items in the list
Data: Index coordinates of each point or element in the list, or (for

InwardNormalList) physical-space normal vectors at each point or
element in the list

Children: None
Cardinality: 0,1
Parameters: IndexDimension, either PointListSize or ListLength, and

DataType; or (for InwardNormalList) PhysicalDimension,
ListLength, and DataType

6.1.4 Auxiliary Data Group

6.1.4.1 ReferenceState_t

The appearance of a ReferenceState_t node is optional. It is used to specify the values of flow
quantities at reference conditions, e.g., at freestream or stagnation. This is typically done for the
whole database, in which case the ReferenceState_t node is a child of the CGNSBase_t node.

ReferenceState_t nodes follow the usual convention that information specified lower in the tree
overrides higher level specifications. Such overrides are therefore specified if a ReferenceState_t
node appears as a child of a Zone_t, ZoneBC_t, or BCDataSet_t node.

The actual values are stored in one or more DataArray_t children whose names identify the
quantities being stored. If present, the units specified in the DimensionalUnits_t child apply to
all DataArray_t children, subject to the usual override convention. (I.e., if one of the DataAr-
ray_t children itself has a DimensionalUnits_t child, it takes precedence over the higher level
specification.)

Node Attributes

Name: ReferenceState
Label: ReferenceState_t
DataType: MT
Children: See Figure 38
Cardinality: 0,1

26

6 Detailed CGNS Node Descriptions

6.1.4.2 ConvergenceHistory_t

ConvergenceHistory_t nodes are intended for the storage of lists of quantities accumulated
during calculations associated with either the entire CGNS database or with a single zone.

In the former case, they are called Global convergence histories, and appear as children of the
CGNSBase_t node. In the latter, they are called Local and stored below, with the zones to which
they correspond.

Each ConvergenceHistory_t node is a parent of a collection of one-dimensional DataArray_t
nodes, each of which contains a list of values of a quantity defined by the user. These quantities
are differentiated by their user-assigned Names. User definitions of the names are recorded in
a Descriptor_t child node with Name NormDefinitions. Children of types DataClass_t and
DimensionalUnits_t modify the meaning of the DataArray_t children in the usual manner.

Node Attributes

Name: GlobalConvergenceHistory if under a CGNSBase_t node;
ZoneConvergenceHistory if under a Zone_t node

Label: ConvergenceHistory_t
DataType: I4
Dimension: 1
Dimension Values: 1
Data: Number of iterations
Children: See Figure 36
Cardinality: 0,1

6.1.4.3 IntegralData_t

IntegralData_t nodes are intended for the storage of integrated flow quantities such as mass
flows, forces and moments. These are kept in DataArray_t children just as in the Convergence-
History_t nodes, except that these nodes hold only one real number each.

Node Attributes

Name: User defined
Label: IntegralData_t
DataType: MT
Children: See Figure 37
Cardinality: 0,N

6.1.4.4 UserDefinedData_t

UserDefinedData_t nodes are intended as a means of storing arbitrary user-defined data in
Descriptor_t and DataArray_t children without the restrictions or implicit meanings imposed on
these node types at other node locations.

Multiple Descriptor_t and DataArray_t children may be stored below a UserDefinedData_t
node, and the DataArray_t children may be of any dimension and size.

Node Attributes

Name: User defined
Label: UserDefinedData_t
DataType: MT
Children: See Figure 49

27

SIDS-to-ADF File Mapping Manual

Cardinality: 0,N

6.1.4.5 Gravity_t

An optional Gravity_t node may be used to define the gravitational vector.

Node Attributes

Name: Gravity
Label: Gravity_t
DataType: MT
Children: See Figure 50
Cardinality: 0,1

6.2 Specialized Nodes

In this section we describe nodes whose use is specialized to certain types of CFD-related data.
Although these nodes may appear in multiple places in a CGNS DataBase, they play a single role
in the description of the data.

6.2.1 Grid Specification

CGNS recognizes the notion of a collection of subdomains called zones, within each of which
there is a single structured or unstructured grid. Mathematically, the grid is an assignment of a
location in physical space to each element in a discrete computational space. An essential feature of
the grid is the connection structure it inherits from the underlying computational space.

It is possible, given a grid, to create others from it, by translation to cell centers, for exam-
ple. However, CGNS views these as new field structures associated with the original grid, and
the File Mapping specifies that they be stored as FlowSolution_t or DiscreteData_t nodes (see
Section 6.2.2).

6.2.1.1 GridCoordinates_t

A GridCoordinates_t node describes a grid associated with a single zone. For a structured
zone, the connection structure of the underlying computational space is that of a rectangular array,
and its dimension is the IndexDimension, that is, the number of integers required to identify a point
in the grid. The physical dimension is the number of real coordinates assigned at each grid point
and need not be the same. Thus CGNS can store a grid, for example, with IndexDimension equal
to two and a physical dimension of three, that is, a structured grid on a curved surface.

IndexDimension is a zone dependent parameter. For an unstructured grid, it always equals
one, meaning that a unique index is required to specified a node location. For a structured grid,
IndexDimension varries with the CellDimension of the mesh. For a mesh composed of 3D cells,
IndexDimension equals 3, while for a mesh composed of surface or shell elements, IndexDimension
equals 2. The values of the physical coordinates of the grid points are stored in DataArray_t children
of GridCoordinates_t. The names of the coordinates are stored in the Name field of the corre-
sponding DataArray_t node. For common coordinate systems, i.e., Cartesian, polar, cylindrical,
and spherical, the names are specified by the SIDS.

Unlike FlowSolution_t and DiscreteData_t nodes (see Section 6.2.2), GridCoordinates_t
nodes are not permitted to have GridLocation_t children, because all grid points are at vertices by
definition.

28

6 Detailed CGNS Node Descriptions

Coordinate arrays may also contain rind data. If they do, the GridCoordinates_t node must
have a Rind_t child node describing the amount of rind. All DataArray_t nodes under GridCoor-
dinates_t must have the same size. Because the number of field quantities to be stored depends
on the number of rind, the actual dimension values are functions, specified in this document by the
generic term DataSize[].

Under each node of type Zone_t, the original grid is contained in a node named GridCoordi-
nates. Additional GridCoordinates_t data structures are allowed, with user-defined names, to
store the grid at multiple time steps or iterations.

Node Attributes

Name: GridCoordinates or user defined
Label: GridCoordinates_t
DataType: MT
Children: See Figure 5
Cardinality: 0,N
Parameters: IndexDimension, VertexSize
Functions: DataSize

6.2.1.2 Elements_t

The Elements_t data structure is required for unstructured zones, and contains the element
connectivity data, the element type, the element range, the parent elements data, and the number
of boundary elements.

Node Attributes

Name: User defined
Label: Elements_t
DataType: I4
Dimension: 1
Dimension Values: 2
Data: ElementType value, ElementSizeBoundary
Children: See Figure 6
Cardinality: 0,N

6.2.1.3 Axisymmetry_t

The Axisymmetry_t data structure may be included as a child of the CGNSBase_t node to record
the axis of rotation and the angle of rotation around this axis for an axisymmetric database.

Node Attributes

Name: Axisymmetry
Label: Axisymmetry_t
DataType: MT
Children: See Figure 7
Cardinality: 0,1

6.2.1.4 RotatingCoordinates_t

The RotatingCoordinates_t data structure may be included as a child of either the CGNSBase_t
node or a Zone_t node to record the center of rotation and the rotation rate vector for a rotating
coordinate system.

29

SIDS-to-ADF File Mapping Manual

Node Attributes

Name: RotatingCoordinates
Label: RotatingCoordinates_t
DataType: MT
Children: See Figure 8
Cardinality: 0,1

6.2.2 Field Specification

The object of computational field physics is to compute fields of physical data associated with
points in space.

6.2.2.1 FlowSolution_t

A FlowSolution_t node describes a field of physical data associated with the grid for a single
zone. It is intended for the storage of computed flowfield data such as densities and pressures. There
is no convention as to how many or what kind of quantities must or may be stored. In particular, it
is not specified that the quantities need in any sense be either complete or non-redundant.

The data are stored in DataArray_t children of FlowSolution_t. These DataArray_t nodes
are dimensioned by the same underlying IndexDimension parameter as the grid, and the order of
storage within the DataArray_t nodes is presumed the same as it is for the grid. The names of
the physical quantities are stored in the Name field of the corresponding DataArray_t node. For
common fluid dynamic quantities the names are specified by the SIDS.

The relationship between the locations of the field quantities and the vertices of the grid is spec-
ified by a GridLocation_t child node. If this node is absent, the field quantities are assumed to be
associated with the grid vertices. Field arrays may also contain rind data. If they do, the FlowSolu-
tion_t node must have a Rind_t child node describing the amount of rind. All DataArray_t nodes
under a single FlowSolution_t must have the same size. Field arrays containing different numbers
of rind must be stored under different FlowSolution_t nodes. There may be any number of nodes
of type FlowSolution_t under a Zone_t.

Because the number of field quantities to be stored depends on the number of rind and on
the location with respect to the grid, the actual dimension values are functions, specified in this
document by the generic term DataSize[].

The meaning of the field arrays is modified in the usual way by any DataClass_t or Dimension-
alUnits_t children of the FlowSolution_t node.

Node Attributes

Name: User defined
Label: FlowSolution_t
DataType: MT
Children: See Figure 9
Cardinality: 0,N
Parameters: IndexDimension, VertexSize, CellSize
Functions: DataSize

6.2.2.2 DiscreteData_t

DiscreteData_t nodes are identical to FlowSolution_t nodes, but are intended for the storage

30

6 Detailed CGNS Node Descriptions

of fields of real data not usually identified as part of the field solution, such as cell-centered grids.

Node Attributes

Name: User defined
Label: DiscreteData_t
DataType: MT
Children: See Figure 9
Cardinality: 0,N
Parameters: IndexDimension, VertexSize, CellSize
Functions: DataSize

6.2.3 Connectivity Group

6.2.3.1 Transform Node

The Transform node is a node of type int[] which is identified by its name rather than its label.
Thus the name must be “Transform”. It appears only as a child of a node of type GridConnectiv-
ity1to1_t.

This node stores the transformation matrix relating the indices of two adjacent zones. Its data
field contains a list of IndexDimension signed integers, each within the range [-IndexDimension,
..., +IndexDimension], and no two of which have the same absolute value. Thus in 3-D allowed
components are 0, ±1, ±2, and ±3. Each component of the array shows the image in the adjacent
zone of a positive index increment in the current zone. The SIDS contain complete details.

Node Attributes

Name: Transform
Label: “int[IndexDimension]”
DataType: I4
Dimension: 1
Dimension Values: IndexDimension
Data: Transformation matrix (shorthand)
Children: None
Cardinality: 0,1
Parameters: IndexDimension

6.2.3.2 GridConnectivityType_t

The purpose of this node is to describe the type of zone-to-zone connectivity specified by its
parent, which is always a GridConnectivity_t node. The connectivity type is given in the data
field as a character string which may take one of three specific values: Abutting, Abutting1to1, or
Overset.

There is a shorthand form of the GridConnectivity_t node, namely, GridConnectivity1to1_t,
which incorporates the assumption that the connection is Abutting1to1. Nodes of type GridCon-
nectivity1to1_t do not have GridConnectivityType_t subnodes. However, GridConnectiv-
ity1to1_t nodes can only be used to specify zone-to-zone connections on rectangular subregions
between two structured zones. So the use of GridConnectivityType_t subnodes to specify Abut-
ting1to1 is required if the connecting regions are not rectangular, or if the connectivity involves a
least one unstructured zone.

Node Attributes

31

SIDS-to-ADF File Mapping Manual

Name: GridConnectivityType
Label: GridConnectivityType_t
DataType: C1
Dimension: 1
Dimension Values: Length of string
Data: Abutting, Abutting1to1, or Overset
Children: None
Cardinality: 0,1

6.2.3.3 GridConnectivity1to1_t

This node is a shorthand format of GridConnectivity_t (see Section 6.2.3.4) capable of describ-
ing only Abutting1to1 connections between two structured zones. The underlying subregion must
have rectangular data structure.

Each GridConnectivity1to1_t node describes a subregion of a face of a zone whose vertices
are coincident in a 1-to-1 fashion with those of a corresponding subregion of a face of another zone.
Each ZoneGridConnectivity_t node may have as many GridConnectivity1to1_t (or GridCon-
nectivity_t) children as are required to describe the connection structure.

The location of the connected subregion of a face of the current zone is given in a single child of
type IndexRange_t, whose name is specified by the mapping as “PointRange”. The location of the
corresponding subregion on a face of the other zone is given in a single child of type IndexRange_t,
whose name is specified by the mapping as “PointRangeDonor”. The first (i.e., beginning) points in
these IndexRange_t nodes are presumed to be coincident. The specification of the correspondence
is completed by the inclusion of a Transform child node which describes the relative orientation of
the two systems of indices. The second (i.e., end) point of the PointRange subnode specifies the
extant of the connection.

In general, the File Mapping seeks to avoid the storage of redundant data. However, there are
two redundancies associated with GridConnectivity1to1_t. First, for the sake of symmetry, the
information recorded here is duplicated (in reverse) in a corresponding node under the donor zone.
It is expected that these two specifications will agree.

Second, the end point of the PointRangeDonor can be calculated from the other three points
specified, along with the transform. However, the transform cannot be inferred from the four points.
Therefore, the end point of the PointRangeDonor is considered to be redundant, and the three points
and the transform are designated as the primary specification.

Node Attributes

Name: User defined
Label: GridConnectivity1to1_t
DataType: C1
Dimension: 1
Dimension Values: Length of string
Data: ZoneDonorName
Children: See Figure 11
Cardinality: 0,N
Parameters: IndexDimension

32

6 Detailed CGNS Node Descriptions

6.2.3.4 GridConnectivity_t

The GridConnectivity_t node is the most general format for describing grid connectivity. It
can describe one-to-one, mismatched, and overset connectivity, and the underlying subregions of the
connecting zones need not be rectangular.

Each GridConnectivity_t node describes a subregion of a zone which corresponds to a subregion
of another zone. Each ZoneGridConnectivity_t node may have as many GridConnectivity_t (or
GridConnectivity1to1_t) children as are required to describe the connection structure.

The location of the connected subregion of the current zone is given in a single child of type
either IndexRange_t or IndexArray_t, whose name is specified by the mapping as “PointRange”
or “PointList”, respectively.

If the grid connectivity is one-to-one, the corresponding subregion is defined with a single child
of type IndexArray_t, whose name is specified by the mapping as “PointListDonor”. Otherwise,
the corresponding subregion is defined by two child nodes, one defining the cells and the other the
interpolation factors within the cells. See the SIDS for the complete description.

Node Attributes

Name: User defined
Label: GridConnectivity_t
DataType: C1
Dimension: 1
Dimension Values: Length of string
Data: ZoneDonorName
Children: See Figure 12
Cardinality: 0,N
Parameters: IndexDimension, CellDimension
Functions: PointListSize

6.2.3.5 GridConnectivityProperty_t

An optional GridConnectivityProperty_t node may be used to record special properties asso-
ciated with particular connectivity patches.

Node Attributes

Name: GridConnectivityProperty
Label: GridConnectivityProperty_t
DataType: MT
Children: See Figure 13
Cardinality: 0,1

6.2.3.6 Periodic_t

A Periodic_t node may be used as a child of GridConnectivityProperty_t to record data
associated with a periodic interface.

Node Attributes

Name: Periodic
Label: Periodic_t
DataType: MT
Children: See Figure 14

33

SIDS-to-ADF File Mapping Manual

Cardinality: 0,1

6.2.3.7 AverageInterface_t

An AverageInterface_t node is used as a child of GridConnectivityProperty_t when data at
the current connectivity interface is to be averaged in some way prior to passing it to a neighboring
interface.

Node Attributes

Name: AverageInterface
Label: AverageInterface_t
DataType: MT
Children: See Figure 15
Cardinality: 0,1

6.2.3.8 OversetHoles_t

A node of type OversetHoles_t describes a region in a grid in which solution values are to
be ignored because the data in the region is to be represented by values associated with other
“overlapping” zones (equivalent to that specified by IBLANK = 0 in the PLOT3D format). Each
ZoneGridConnectivity_t node may have as many OversetHoles_t children as are required to
describe the affected region.

Each hole is described either by a single child of type IndexArray_t or by any number of children
of type IndexRange_t. The latter is provided as a means of specifying holes which are unions of
small numbers of logically rectangular subregions. However, if the region is irregular, the intent is
that it should be specified by a single child of type IndexArray_t which lists the points.

Node Attributes

Name: User defined
Label: OversetHoles_t
DataType: MT
Children: See Figure 16
Cardinality: 0,N
Parameters: IndexDimension

6.2.3.9 ZoneGridConnectivity_t

Each Zone_t node may have at most one child of type ZoneGridConnectivity. It holds no data,
but serves as the point below which all connectivity data associated with the zone can be found.

Node Attributes

Name: ZoneGridConnectivity
Label: ZoneGridConnectivity_t
DataType: MT
Children: See Figure 10
Cardinality: 0,1
Parameters: IndexDimension, CellDimension

34

6 Detailed CGNS Node Descriptions

6.2.4 Boundary Condition Group

Nodes in this group are used to specify the physical boundary conditions. Each boundary condi-
tion is associated with a subregion of a zone. For brevity below, we use the word “domain” to refer
to the region on which a boundary condition is to be enforced.

The domain is usually, but not necessarily, a subregion of a face of the zone. The mapping is suf-
ficiently general to permit the description of internal boundary conditions and boundary conditions
which do not lie on a constant coordinate plane.

Mathematical boundary conditions are generally applied on subregions of physical dimension one
less than the corresponding field problem. This condition, however, is neither defined nor enforced
by the File Mapping.

A large number of standard boundary condition types are named by the SIDS. In addition, it is
possible to define new types as collections of Dirichlet and Neumann conditions. It is not possible
to describe the entire array of possibilities within this document, and the reader should consult the
SIDS for a full description.

6.2.4.1 InwardNormalIndex

An InwardNormalIndex node is a node of type int[IndexDimension] which is identified by its
Name. It applies to structured grids only, and its function is to specify on which side of the domain
the condition is to be enforced.

InwardNormalIndex may have only one nonzero element, whose sign indicates the computational-
coordinate direction of the boundary condition patch normal; this normal points into the interior of
the zone. For example, if the domain lies on the face of a three-dimensional zone where the second
index is a maximum, the inward normal index values are [0,−1, 0].

The InwardNormalIndex node must apply to the entire domain of the boundary condition.

For a boundary condition on a face of a zone, the InwardNormalIndex can be calculated from
other data and need not be specified. Its purpose is to define the normal direction for internal
boundary conditions and other cases where the direction is ambiguous.

Node Attributes

Name: InwardNormalIndex
Label: “int[IndexDimension]”
DataType: I4
Dimension: 1
Dimension Values: IndexDimension
Data: Index of inward normal
Children: None
Cardinality: 0,1
Parameters: IndexDimension

6.2.4.2 InwardNormalList

An InwardNormalList node is a node of type IndexArray_t identified by its Name. Its data
field contains an array of physical (real) vectors which point into the region on which the boundary
condition is to be applied. It may be used for boundary conditions on complex domains for which
InwardNormalIndex is not defined, or to store vectors orthogonal to the domain of the boundary
condition where these are not easily calculated from the domain itself.

35

SIDS-to-ADF File Mapping Manual

Node Attributes

Name: InwardNormalList
Label: IndexArray_t
DataType: R4 or R8
Dimension: 2
Dimension Values: PhysicalDimension, ListLength
Data: Inward normal vectors
Children: None
Cardinality: 0,1
Parameters: PhysicalDimension, ListLength

6.2.4.3 BCData_t

When global or local Dirichlet or Neumann boundary conditions are defined, a node of type
BCData_t is introduced to store the numerical data. For global data, this consists of a single quantity
kept in a DataArray_t child. For local data, e.g., a pressure profile, it is a vector of quantities stored
in an order corresponding to that defining the domain and kept in a child node of type DataArray_t.

Node Attributes

Name: DirichletData or NeumannData
Label: BCData_t
DataType: MT
Children: See Figure 20
Cardinality: 0,1
Parameters: ListLength

6.2.4.4 BCDataSet_t

The function of a BCDataSet_t node is to specify the equations to be applied at the boundary,
including any actual data values which may be required. The type of the equation is specified by
the SIDS and recorded in the data field. For some types, the data is implicit or empty. For others,
the data is specified in BCData_t children.

If the locations at which the boundary conditions are to be applied are specified in BCDataSet_t,
using PointRange or PointList, the structure function ListLength is used. Otherwise, the struc-
ture parameter ListLength is required.

Node Attributes

Name: User defined
Label: BCDataSet_t
DataType: C1
Dimension: 1
Dimension Values: Length of string
Data: BCTypeSimple value
Children: See Figure 19
Cardinality: 0,N
Functions: ListLength
Parameters: ListLength

36

6 Detailed CGNS Node Descriptions

6.2.4.5 BC_t

A BC_t node specifies a single boundary condition to be applied on a single zone. It specifies the
domain on which the condition is to be applied and the equations to be enforced. All the BC_t nodes
for a single zone are found under that zone’s ZoneBC_t node. A ZoneBC_t node may have as many
BC_t children as are required to describe the physical boundary conditions on the corresponding
zone.

The domain on which the boundary condition is to be enforced is specified by a single node of type
either IndexRange_t or IndexArray_t. The equations are specified in one or more BCDataSet_t
children.

The type of the boundary condition, which may be either simple or compound, is specified in
the data field. For a complete description, it is necessary to consult the SIDS.

Node Attributes

Name: User defined
Label: BC_t
DataType: C1
Dimension: 1
Dimension Values: Length of string
Data: BCType value
Children: See Figure 18
Cardinality: 0,N
Parameters: IndexDimension, PhysicalDimension

6.2.4.6 ZoneBC_t

The ZoneBC_t node occurs at most once for each zone and serves as the location under which all
boundary conditions on that zone are collected.

Node Attributes

Name: ZoneBC
Label: ZoneBC_t
DataType: MT
Children: See Figure 17
Cardinality: 0,1
Parameters: IndexDimension, PhysicalDimension

6.2.4.7 BCProperty_t

An optional BCProperty_t node may be used to record special properties associated with par-
ticular boundary condition patches.

Node Attributes

Name: BCProperty
Label: BCProperty_t
DataType: MT
Children: See Figure 21
Cardinality: 0,1

37

SIDS-to-ADF File Mapping Manual

6.2.4.8 WallFunction_t

A WallFunction_t node may be used as a child of BCProperty_t to record data associated with
the use of wall function boundary conditions.

Node Attributes

Name: WallFunction
Label: WallFunction_t
DataType: MT
Children: See Figure 22
Cardinality: 0,1

6.2.4.9 Area_t

An Area_t node may be used as a child of BCProperty_t to record data associated with area-
related boundary conditions such as bleed.

Node Attributes

Name: Area
Label: Area_t
DataType: MT
Children: See Figure 23
Cardinality: 0,1

6.2.5 Equation Specification Group

Nodes in this group serve to identify the physical model associated with the data being recorded.
Nearly always, the data is of enumeration type and is selected from a collection of terms defined in
detail in the SIDS. The names are largely self explanatory, and the detailed definitions will not be
repeated here. Numerical values associated with the physical model depend on the type of modeling
being chosen and are generally stored in child nodes of type DataArray_t.

6.2.5.1 GoverningEquations_t

This node names the equation set being solved, for example, FullPotential or NSTurbulent.
If Navier-Stokes, the diffusion terms retained may be specified in a DiffusionModel subnode.

Node Attributes

Name: GoverningEquations
Label: GoverningEquations_t
DataType: C1
Dimension: 1
Dimension Values: Length of string
Data: GoverningEquationsType value
Children: See Figure 25
Cardinality: 0,1
Parameters: CellDimension

6.2.5.2 GasModel_t

A node of type GasModel_t names the gas model used, for example, Ideal or VanderWaals.

38

6 Detailed CGNS Node Descriptions

Node Attributes

Name: GasModel
Label: GasModel_t
DataType: C1
Dimension: 1
Dimension Values: Length of string
Data: GasModelType value
Children: See Figure 26
Cardinality: 0,1

6.2.5.3 ViscosityModel_t

A node of type ViscosityModel_t names the molecular viscosity model used to relate the vis-
cosity to the temperature, for example, PowerLaw or SutherlandLaw.

Node Attributes

Name: ViscosityModel
Label: ViscosityModel_t
DataType: C1
Dimension: 1
Dimension Values: Length of string
Data: ViscosityModelType value
Children: See Figure 27
Cardinality: 0,1

6.2.5.4 EquationDimension

A node named EquationDimension, of type int[], gives the number of dependent variables
required for a complete solution description, or the number of equations being solved. For example,
for NSTurbulent with the k-ε turbulence model in three dimensions, it is 7.

Node Attributes

Name: EquationDimension
Label: “int”
DataType: I4
Dimension: 1
Dimension Values: 1
Data: EquationDimension value
Children: None
Cardinality: 0,1

6.2.5.5 ThermalConductivityModel_t

A node of type ThermalConductivityModel_t names the model used to relate the thermal
conductivity to the temperature, for example, ConstantPrandtl, PowerLaw, or SutherlandLaw.
These closely parallel the viscosity model.

Node Attributes

Name: ThermalConductivityModel
Label: ThermalConductivityModel_t
DataType: C1

39

SIDS-to-ADF File Mapping Manual

Dimension: 1
Dimension Values: Length of string
Data: ThermalConductivityModelType value
Children: See Figure 28
Cardinality: 0,1

6.2.5.6 TurbulenceClosure_t

A node of type TurbulenceClosure_t names the method of closing the Reynolds stress equations
when the governing equations are turbulent, for example, EddyViscosity or ReynoldsStressAlge-
braic.

Node Attributes

Name: TurbulenceClosure
Label: TurbulenceClosure_t
DataType: C1
Dimension: 1
Dimension Values: Length of string
Data: TurbulenceClosureType value
Children: See Figure 29
Cardinality: 0,1

6.2.5.7 TurbulenceModel_t

A node of type TurbulenceModel_t names the equation set used to model the turbulence quan-
tities, for example, Algebraic_BaldwinLomax or OneEquation_SpalartAllmaras.

Node Attributes

Name: TurbulenceModel
Label: TurbulenceModel_t
DataType: C1
Dimension: 1
Dimension Values: Length of string
Data: TurbulenceModelType value
Children: See Figure 30
Cardinality: 0,1
Parameters: CellDimension

6.2.5.8 ThermalRelaxationModel_t

A node of type ThermalRelaxationModel_t names the equation set used to model the thermal
relaxation quantities, for example, Frozen or ThermalEquilib.

Node Attributes

Name: ThermalRelaxationModel
Label: ThermalRelaxationModel_t
DataType: C1
Dimension: 1
Dimension Values: Length of string
Data: ThermalRelaxationModelType value
Children: See Figure 31
Cardinality: 0,1

40

6 Detailed CGNS Node Descriptions

6.2.5.9 ChemicalKineticsModel_t

A node of type ChemicalKineticsModel_t names the equation set used to model the chemical
kinetics quantities, for example, Frozen or ChemicalEquilibCurveFit.

Node Attributes

Name: ChemicalKineticsModel
Label: ChemicalKineticsModel_t
DataType: C1
Dimension: 1
Dimension Values: Length of string
Data: ChemicalKineticsModelType value
Children: See Figure 32
Cardinality: 0,1

6.2.5.10 EMElectricFieldModel_t

A node of type EMElectricFieldModel_t names the electric field model used for electromagnetic
flows, for example, Constant or Voltage.

Node Attributes

Name: EMElectricFieldModel
Label: EMElectricFieldModel_t
DataType: C1
Dimension: 1
Dimension Values: Length of string
Data: EMElectricFieldModelType value
Children: See Figure 33
Cardinality: 0,1

6.2.5.11 EMMagneticFieldModel_t

A node of type EMMagneticFieldModel_t names the magnetic field model used for electromag-
netic flows, for example, Constant or Interpolated.

Node Attributes

Name: EMMagneticFieldModel
Label: EMMagneticFieldModel_t
DataType: C1
Dimension: 1
Dimension Values: Length of string
Data: EMMagneticFieldModelType value
Children: See Figure 34
Cardinality: 0,1

6.2.5.12 EMConductivityModel_t

A node of type EMConductivityModel_t names the conductivity model used for electromagnetic
flows, for example, Constant or Equilibrium_LinRessler.

Node Attributes

Name: EMConductivityModel

41

SIDS-to-ADF File Mapping Manual

Label: EMConductivityModel_t
DataType: C1
Dimension: 1
Dimension Values: Length of string
Data: EMConductivityModelType value
Children: See Figure 35
Cardinality: 0,1

6.2.5.13 FlowEquationSet_t

A node of type FlowEquationSet_t appears either at the highest level of the tree (under CGNS-
Base_t), to indicate the equation set whose solution is recorded throughout the database, or below
a Zone_t node, to indicate the set of equations solved in that zone. The usual convention applies,
i.e., specifications at the local (zone) level override global specifications.

Node Attributes

Name: FlowEquationSet
Label: FlowEquationSet_t
DataType: MT
Children: See Figure 24
Cardinality: 0,1
Parameters: CellDimension

6.2.6 Family Group

Because there is rarely a 1-to-1 connection between mesh regions and geometric entities, it is
often desirable to set geometric associations indirectly in a CGNS file. That is, rather than setting
the geometry data for each mesh entity (nodes, edges, and faces), it’s useful to associate them
with intermediate objects. The intermediate objects are in turn linked to nodal regions of the
computational mesh. This intermediate object is defined as a CFD family.

Each mesh surface may linked to the geometric entities of one or more CAD databases by a user-
defined CFD family name. The CFD family corresponds to one or more CAD geometric entities on
which the mesh face is projected. Each one of these geometric entities is described in a CAD file
and is not redefined within the CGNS file.

6.2.6.1 Family_t

This node, a child of the CGNSBase_t node, contains the definition of a single CFD family.
Multiple Family_t nodes are allowed.

Node Attributes

Name: User defined
Label: Family_t
DataType: MT
Children: See Figure 42
Cardinality: 0,N

6.2.6.2 FamilyName_t

This node is used to identify a family to which a particular zone or boundary belongs. Note that
the name of the family is defined by the “Name” of the Family_t node, and is stored as data in the

42

6 Detailed CGNS Node Descriptions

FamilyName_t node.

Node Attributes

Name: FamilyName
Label: FamilyName_t
DataType: C1
Dimension: 1
Dimension Values: Length of string
Data: Name of CFD family
Children: None
Cardinality: 0,1

6.2.6.3 FamilyBC_t

This node contains a boundary condition type for a particular CFD family.

Node Attributes

Name: FamilyBC
Label: FamilyBC_t
DataType: C1
Dimension: 1
Dimension Values: Length of string
Data: BCType value
Children: See Figure 43
Cardinality: 0,1

6.2.6.4 GeometryReference_t

GeometryReference_t nodes are used to associate a CFD family with one or more CAD databases.

Node Attributes

Name: User defined
Label: GeometryReference_t
DataType: MT
Children: See Figure 44
Cardinality: 0,N

6.2.6.5 GeometryFile_t

This node contains the name of the CAD geometry file.

Node Attributes

Name: GeometryFile
Label: GeometryFile_t
DataType: C1
Dimension: 1
Dimension Values: Length of string
Data: Name of the CAD geometry file
Children: None
Cardinality: 1

43

SIDS-to-ADF File Mapping Manual

6.2.6.6 GeometryFormat_t

This enumeration node defines the format of the CAD geometry file.

Node Attributes

Name: GeometryFormat
Label: GeometryFormat_t
DataType: C1
Dimension: 1
Dimension Values: Length of string
Data: Name of the CAD geometry format
Children: None
Cardinality: 1

6.2.6.7 GeometryEntity_t

GeometryEntity_t nodes define the names of the entities in CAD geometry file that make up a
CFD family.

Node Attributes

Name: User defined
Label: GeometryEntity_t
DataType: MT
Children: None
Cardinality: 0,N

6.2.7 Time-Dependent Group

Nodes in this section are used for information related to time-dependent flows, and include
specification of grid motion and storage of time-dependent or iterative data.

6.2.7.1 BaseIterativeData_t

Located directly under the CGNSBase_t node, the BaseIterativeData_t node contains infor-
mation about the number of time steps or iterations being recorded, and the time and/or iteration
values at each step. In addition, it may include the list of zones and families for each step of the
simulation, if these vary throughout the simulation.

Node Attributes

Name: User defined
Label: BaseIterativeData_t
DataType: I4
Dimension: 1
Dimension Values: 1
Data: NumberOfSteps
Children: See Figure 45
Cardinality: 0,1

6.2.7.2 ZoneIterativeData_t

The ZoneIterativeData_t node is a child of the Zone_t node, and is used to store pointers to
zonal data for each recorded step of the simulation.

44

6 Detailed CGNS Node Descriptions

Node Attributes

Name: User defined
Label: ZoneIterativeData_t
DataType: MT
Children: See Figure 46
Cardinality: 0,1
Parameters: NumberOfSteps

6.2.7.3 RigidGridMotion_t

RigidGridMotion_t nodes are used to store data defining rigid translation and/or rotation of the
grid coordinates. Multiple RigidGridMotion_t nodes may be associated with different iterations or
time steps in the computation. This association is recorded under the ZoneIterativeData_t node.

Node Attributes

Name: User defined
Label: RigidGridMotion_t
DataType: C1
Dimension: 1
Dimension Values: Length of string
Data: RigidGridMotionType value
Children: See Figure 47
Cardinality: 0,N

6.2.7.4 ArbitraryGridMotion_t

ArbitraryGridMotion_t nodes are used to store grid velocities for each grid point in a zone (i.e.,
for deforming grids). Multiple ArbitraryGridMotion_t nodes may be associated with different itera-
tions or time steps in the computation. This association is recorded under the ZoneIterativeData_t
node.

Note that instantaneous grid coordinates at different iterations or time steps may be recorded
using multiple GridCoordinates_t nodes under a Zone_t node.

Node Attributes

Name: User defined
Label: ArbitraryGridMotion_t
DataType: C1
Dimension: 1
Dimension Values: Length of string
Data: ArbitraryGridMotionType value
Children: See Figure 48
Cardinality: 0,N
Parameters: IndexDimension, VertexSize, CellSize
Functions: DataSize

6.2.8 Structural Nodes

In this section we describe the highest levels of the hierarchy. Nodes in this section store only
quantities which refer to all the entities below them. Therir primary function is to provide organi-
zation to the data below.

45

SIDS-to-ADF File Mapping Manual

6.2.8.1 Zone_t

Directly below the highest level node in the database, which is by definition of type CGNSBase_t,
are found nodes of type Zone_t providing entry into the data specific to each zone. There are as
many Zone_t nodes as there are zones. Their children, in turn, record grid, field, connectivity, and
boundary conditions, and a variety of auxiliary data.

Node Attributes

Name: User defined
Label: Zone_t
DataType: I4
Dimension: 2
Dimension Values: IndexDimension, 3
Data: VertexSize[IndexDimension], CellSize[IndexDimension], Vertex-

SizeBoundary[IndexDimension]
Children: See Figure 4
Cardinality: 0,N
Parameters: CellDimension, PhysicalDimension

6.2.8.2 CGNSBase_t

The CGNSBase_t node is by definition the highest level node in the database, and is located
directly below the ADF root node. It provides entry into all other data. Multiple CGNSBase_t nodes
are allowed in an ADF file. The particular database being accessed is determined by the name of
the CGNSBase_t node.

The only data stored in the node itself are CellDimension, the dimensionality of a cell in the
mesh (i.e., 3 for a volume cell and 2 for a face cell), and PhysicalDimension, the number of indices
required to specify a unique physical location in the field data being recorded. However, a variety
of global information concerning the entire database may be stored in children of the CGNSBase_t
node. In particular, a Descriptor_t node at this level can store user commentary on the entire
history of the development of the database.

Other information typically stored directly below the CGNSBase_t node includes convergence
histories, reference states, dimensional units, integrated quantities, and information on the flow
equations being solved.

Node Attributes

Name: User defined
Label: CGNSBase_t
DataType: I4
Dimension: 1
Dimension Values: 2
Data: CellDimension, PhysicalDimension
Children: See Figure 3
Cardinality: 0,N

6.2.8.3 SimulationType_t

This enumeration-type node is a child of the CGNSBase_t node, and specifies whether or not the
data below CGNSBase_t is time-accurate. Nodes for describing time-dependent data are presented
in Section 6.2.7.

46

6 Detailed CGNS Node Descriptions

Node Attributes

Name: SimulationType
Label: SimulationType_t
DataType: C1
Dimension: 1
Dimension Values: Length of string
Data: TimeAccurate or NonTimeAccurate
Children: None
Cardinality: 0,1

6.2.8.4 ZoneType_t

This enumeration-type node is a required child of the Zone_t node, and specifies whether the
grid in that zone is structured or unstructured.

Node Attributes

Name: ZoneType
Label: ZoneType_t
DataType: C1
Dimension: 1
Dimension Values: Length of string
Data: Structured or Unstructured
Children: None
Cardinality: 1

6.2.8.5 CGNSLibraryVersion_t

An ADF file containing a CGNS database also contains, directly below the ADF root node, a
CGNSLibraryVersion_t node. This node contains the version number of the CGNS standard with
which the file is consistent, and is created automatically when the file is created or modified using
the CGNS Mid-Level Library. Note that this node is not actually part of the CGNS database, since
it is not located below a CGNSBase_t node.

Note that an ADF file may contain multiple CGNS databases, but there is only one CGNSLi-
braryVersion_t node. It is assumed that the version number in the CGNSLibraryVersion_t node
is applicable to all the CGNS databases in the file.

Note also that some CGNS nodes may actually be links to CGNS nodes in other files. In this
case, it is assumed that the CGNSLibraryVersion_t node in the “top-level” file is applicable to the
file(s) containing the linked nodes.

Node Attributes

Name: CGNSLibraryVersion
Label: CGNSLibraryVersion_t
DataType: R4
Dimension: 1
Dimension Values: 1
Data: CGNS version number
Children: None
Cardinality: 1

47

A CGNS File Mapping Figures

This Appendix contains figures illustrating the nodal structure of a CGNS database. An example
ADF file hierarchy is shown in Figure 1, but without any internal detail of the individual nodes. Just
below the ADF root node is a CGNSLibraryVersion_t node, and one or more CGNSBase_t nodes.
Each CGNSBase_t node represents the root node of a CGNS database.

Figure 2 shows the layout of succeeding figures. At the top of each page is a single parent node,
and below it are boxes containing detailed descriptions of the nodes which the mapping specifies as
children. Also within the parent’s box are references to the figures corresponding to its parents in
turn.

49

SIDS-to-ADF File Mapping Manual

A
D

F
R

o
ot

N
o
d
e

C
G
N
S
B
a
s
e
1

C
G
N
S
B
a
s
e
_
t

C
G
N
S
L
i
b
r
a
r
y
V
e
r
s
i
o
n

C
G
N
S
L
i
b
r
a
r
y
V
e
r
s
i
o
n
_
t

.
.
.

Z
o
n
e
1

Z
o
n
e
_
t

R
e
f
e
r
e
n
c
e
S
t
a
t
e

R
e
f
e
r
e
n
c
e
S
t
a
t
e
_
t

Z
o
n
e
2

Z
o
n
e
_
t

.
.
.

G
r
i
d
C
o
o
r
d
i
n
a
t
e
s

G
r
i
d
C
o
o
r
d
i
n
a
t
e
s
_
t

C
o
o
r
d
i
n
a
t
e
X

D
a
t
a
A
r
r
a
y
_
t

C
o
o
r
d
i
n
a
t
e
Y

D
a
t
a
A
r
r
a
y
_
t

C
o
o
r
d
i
n
a
t
e
Z

D
a
t
a
A
r
r
a
y
_
t

F
l
o
w
S
o
l
u
t
i
o
n
1

F
l
o
w
S
o
l
u
t
i
o
n
_
t

G
r
i
d
L
o
c
a
t
i
o
n

G
r
i
d
L
o
c
a
t
i
o
n
_
t

D
e
n
s
i
t
y

D
a
t
a
A
r
r
a
y
_
t

M
o
m
e
n
t
u
m
X

D
a
t
a
A
r
r
a
y
_
t

M
o
m
e
n
t
u
m
Y

D
a
t
a
A
r
r
a
y
_
t

M
o
m
e
n
t
u
m
Z

D
a
t
a
A
r
r
a
y
_
t

Z
o
n
e
B
C

Z
o
n
e
B
C
_
t

B
C
1

B
C
_
t

.
.
.

Z
o
n
e
G
r
i
d
C
o
n
n
e
c
t
i
v
i
t
y

Z
o
n
e
G
r
i
d
C
o
n
n
e
c
t
i
v
i
t
y
_
t

O
v
e
r
s
e
t
H
o
l
e
s
1

O
v
e
r
s
e
t
H
o
l
e
s
_
t

G
r
i
d
C
o
n
n
e
c
t
i
v
i
t
y
1

G
r
i
d
C
o
n
n
e
c
t
i
v
i
t
y
_
t

.
.
.

.
.
.

F
ig

u
re

1:
E

xa
m

pl
e

H
ie

ra
rc

hy

50

A CGNS File Mapping Figures

Example Node
(See Figure #)

Name:
Label:
Data-Type:
Dimensions:

ADF node contents

Dimension Values:
}

Data:
Cardinality:
Parameters: Additional information
Functions: about the node
Child Nodes:

}
Name:
Label:
Data-Type:
Dimensions:
Dimension Values:
Data:
Cardinality:
Parameters:
Functions:
Child Nodes:

Name:
Label:
See Figure:

This abbreviated node block
indicates that the node has been
illustrated in a previous figure.

Sub(Child) nodes.
There may be many child nodes.
There may also be additional
levels in the hierarchy.

Parent node

Figure 2: Example Node Structure

51

SIDS-to-ADF File Mapping Manual

Name: User defined
Label: CGNSBase_t
Data-Type: I4
Dimensions: 1
Dimension Values: 2
Data: CellDimension, PhysicalDimension
Cardinality: 0,N

Name: User defined
Label: Zone_t
Data-Type: I4
Dimensions: 2
Dimension Values: IndexDimension,3
Data: VertexSize[IndexDimension],

CellSize[IndexDimension],
VertexSizeBoundary[IndexDimension]

Cardinality: 0,N
Parameters: CellDimension,

PhysicalDimension
Child Nodes: Figure 4

Name: SimulationType
Label: SimulationType_t
Data-Type: C1
Dimensions: 1
Dimension Values: Length of string
Data: SimulationType value
Cardinality: 0,1

Name: User defined
Label: BaseIterativeData_t
Data-Type: I4
Dimensions: 1
Dimension Values: 1
Data: NumberOfSteps
Cardinality: 0,1
Child Nodes: Figure 45

Name: User defined
Label: IntegralData_t
Data-Type: MT
Cardinality: 0,N
Child Nodes: Figure 37

Name: GlobalConvergenceHistory
Label: ConvergenceHistory_t
Data-Type: I4
Dimensions: 1
Dimension Values: 1
Data: Number of iterations
Cardinality: 0,1
Child Nodes: Figure 36

Name: User defined
Label: Family_t
Data-Type: MT
Cardinality: 0,N
Child Nodes: Figure 42

Name: FlowEquationSet
Label: FlowEquationSet_t
Data-Type: MT
Cardinality: 0,1
Parameters: CellDimension
Child Nodes: Figure 24

Figure 3: CGNSBase_t Data Structure (Continued on next page)

52

A CGNS File Mapping Figures

Name: User defined
Label: CGNSBase_t
Data-Type: I4
Dimensions: 1
Dimension Values: 2
Data: CellDimension, PhysicalDimension
Cardinality: 0,N

Name: ReferenceState
Label: ReferenceState_t
Data-Type: MT
Cardinality: 0,1
Child Nodes: Figure 38

Name: Axisymmetry
Label: Axisymmetry_t
Data-Type: MT
Cardinality: 0,1
Child Nodes: Figure 7

Name: RotatingCoordinates
Label: RotatingCoordinates_t
Data-Type: MT
Cardinality: 0,1
Child Nodes: Figure 8

Name: Gravity
Label: Gravity_t
Data-Type: MT
Cardinality: 0,1
Child Nodes: Figure 50

Name: DataClass
Label: DataClass_t
Data-Type: C1
Dimensions: 1
Dimension Values: Length of string
Data: DataClass value
Cardinality: 0,1

Name: DimensionalUnits
Label: DimensionalUnits_t
Data-Type: C1
Dimensions: 2
Dimension Values: (32,5)
Data: DimensionalUnits value
Cardinality: 0,1
Child Nodes: Figure 40

Name: User defined
Label: Descriptor_t
Data-Type: C1
Dimensions: 1
Dimension Values: Length of string
Data: Description string
Cardinality: 0,N

Name: User defined
Label: UserDefinedData_t
Data-Type: MT
Cardinality: 0,N
Child Nodes: Figure 49

Figure 3: CGNSBase_t Data Structure (Continued from previous page)

53

SIDS-to-ADF File Mapping Manual

Zone Node
(See Figure 3)

Name: GridCoordinates (original grid);
User defined (additional grids)

Label: GridCoordinates_t
Data-Type: MT
Cardinality: 0,N
Parameters: IndexDimension, VertexSize
Functions: DataSize
Child Nodes: Figure 5

Name: User defined
Label: DiscreteData_t
Data-Type: MT
Cardinality: 0,N
Parameters: IndexDimension, VertexSize,

CellSize
Functions: DataSize
Child Nodes: Figure 9

Name: User defined
Label: Elements_t
Data-Type: I4
Dimensions: 1
Dimension Values: 2
Data: ElementType, ElementSizeBoundary
Cardinality: 0,N
Child Nodes: Figure 6

Name: ZoneBC
Label: ZoneBC_t
Data-Type: MT
Cardinality: 0,1
Parameters: IndexDimension,

PhysicalDimension
Child Nodes: Figure 17

Name: User defined
Label: FlowSolution_t
Data-Type: MT
Cardinality: 0,N
Parameters: IndexDimension, VertexSize,

CellSize
Functions: DataSize
Child Nodes: Figure 9

Name: ZoneType
Label: ZoneType_t
Data-Type: C1
Dimensions: 1
Dimension Values: Length of string
Data: Structured or Unstructured
Cardinality: 1

Name: Ordinal
Label: Ordinal_t
Data-Type: I4
Dimensions: 1
Dimension Values: 1
Data: User-defined ordinal
Cardinality: 0,1

Name: ZoneGridConnectivity
Label: ZoneGridConnectivity_t
Data-Type: MT
Cardinality: 0,1
Parameters: IndexDimension,

CellDimension
Child Nodes: Figure 10

Figure 4: Zone_t Data Structure (Continued on next page)

54

A CGNS File Mapping Figures

Zone Node
(See Figure 3)

Name: User defined
Label: ZoneIterativeData_t
Data-Type: MT
Cardinality: 0,1
Parameters: NumberOfSteps
Child Nodes: Figure 46

Name: User defined
Label: RigidGridMotion_t
Data-Type: C1
Dimensions: 1
Dimension Values: Length of string
Data: RigidGridMotionType value
Cardinality: 0,N
Child Nodes: Figure 47

Name: ReferenceState
Label: ReferenceState_t
See Figure: 3

Name: DataClass
Label: DataClass_t
See Figure: 3

Name: User defined
Label: IntegralData_t
See Figure: 3

Name: User defined
Label: UserDefinedData_t
See Figure: 3

Name: User defined
Label: ArbitraryGridMotion_t
Data-Type: C1
Dimensions: 1
Dimension Values: Length of string
Data: ArbitraryGridMotionType value
Cardinality: 0,N
Parameters: IndexDimension, VertexSize,

CellSize
Functions: DataSize
Child Nodes: Figure 48

Name: FamilyName
Label: FamilyName_t
See Figure: 18

Name: DimensionalUnits
Label: DimensionalUnits_t
See Figure: 3

Name: FlowEquationSet
Label: FlowEquationSet_t
See Figure: 3

Name: ZoneConvergenceHistory
Label: ConvergenceHistory_t
See Figure: 3

Name: RotatingCoordinates
Label: RotatingCoordinates_t
See Figure: 3

Name: User defined
Label: Descriptor_t
See Figure: 3

Figure 4: Zone_t Data Structure (Continued from previous page)

55

SIDS-to-ADF File Mapping Manual

GridCoordinates Node
(See Figure 4)

Name: Data-name identifier or user defined
Label: DataArray_t
Data-Type: R4 or R8
Dimensions: IndexDimension
Dimension Values: DataSize[]
Data: Grid coordinate values
Cardinality: 0,N
Parameters: DataType, IndexDimension, DataSize
Child Nodes: Figure 39

Name: Rind
Label: Rind_t
Data-Type: I4
Dimensions: 1
Dimension Values: 2*IndexDimension
Data: RindPlanes
Cardinality: 0,1
Parameters: IndexDimension

Name: User defined
Label: Descriptor_t
See Figure: 3

Name: DataClass
Label: DataClass_t
See Figure: 3

Name: DimensionalUnits
Label: DimensionalUnits_t
See Figure: 3

Name: User defined
Label: UserDefinedData_t
See Figure: 3

Note:
• The data labeled RindPlanes under Rind_t refers to number of rind planes for
structured grids, and number of rind points for unstructured grids.

Figure 5: GridCoordinates_t Data Structure

56

A CGNS File Mapping Figures

Elements Node
(See Figure 4)

Name: ElementRange
Label: IndexRange_t
Data-Type: I4
Dimensions: 1
Dimension Values: 2
Data: Begin, end
Cardinality: 1

Name: ElementConnectivity
Label: DataArray_t
Data-Type: I4
Dimensions: 1
Dimension Values: ElementDataSize
Data: Element connectivity table
Cardinality: 1
Functions: NPE, ElementSize, ElementDataSize

Name: ParentData
Label: DataArray_t
Data-Type: I4
Dimensions: 2
Dimension Values: ElementSize,4
Data: Parent1[ElementSize],

Parent2[ElementSize],
SideOfParent1[ElementSize],
SideOfParent2[ElementSize]

Cardinality: 0,1

Name: Rind
Label: Rind_t
See Figure: 5

Name: User defined
Label: Descriptor_t
See Figure: 3

Name: User defined
Label: UserDefinedData_t
See Figure: 3

Figure 6: Elements_t Data Structure

57

SIDS-to-ADF File Mapping Manual

Axisymmetry Node
(See Figure 3)

Name: AxisymmetryReferencePoint
Label: DataArray_t
Data-Type: R4
Dimensions: 1
Dimension Values: 2
Data: Origin for defining rotation axis
Cardinality: 1
Child Nodes: Figure 39

Name: AxisymmetryAngle
Label: DataArray_t
Data-Type: R4
Dimensions: 1
Dimension Values: 1
Data: Circumferential extent
Cardinality: 0,1
Child Nodes: Figure 39

Name: DataClass
Label: DataClass_t
See Figure: 3

Name: User defined
Label: Descriptor_t
See Figure: 3

Name: AxisymmetryAxisVector
Label: DataArray_t
Data-Type: R4
Dimensions: 1
Dimension Values: 1
Data: Direction cosines of rotation axis
Cardinality: 1
Child Nodes: Figure 39

Name: CoordinateNames
Label: DataArray_t
Data-Type: C1
Dimensions: 2
Dimension Values: 32,2
Data: Dataname identifiers for coordinates
Cardinality: 0,1
Child Nodes: Figure 39

Name: DimensionalUnits
Label: DimensionalUnits_t
See Figure: 3

Name: User defined
Label: Descriptor_t
See Figure: 3

Figure 7: Axisymmetry_t Data Structure

58

A CGNS File Mapping Figures

RotatingCoordinates Node
(See Figures 3, 42)

Name: RotationCenter
Label: DataArray_t
Data-Type: R4
Dimensions: 1
Dimension Values: PhysicalDimension
Data: Coordinates of center of rotation
Cardinality: 1
Child Nodes: Figure 39

Name: RotationRateVector
Label: DataArray_t
Data-Type: R4
Dimensions: 1
Dimension Values: PhysicalDimension
Data: Angular velocity components
Cardinality: 1
Child Nodes: Figure 39

Name: User defined
Label: Descriptor_t
See Figure: 3

Name: DataClass
Label: DataClass_t
See Figure: 3

Name: DimensionalUnits
Label: DimensionalUnits_t
See Figure: 3

Name: User defined
Label: UserDefinedData_t
See Figure: 3

Figure 8: RotatingCoordinates_t Data Structure

59

SIDS-to-ADF File Mapping Manual

FlowSolution Node or
DiscreteData Node

(See Figure 4)

Name: GridLocation
Label: GridLocation_t
Data-Type: C1
Dimensions: 1
Dimension Values: Length of string
Data: GridLocation value
Cardinality: 0,1

Name: Data-name identifier or user defined
Label: DataArray_t
Data-Type: DataType
Dimensions: IndexDimension
Dimension Values: DataSize[]
Data: Solution quantities
Cardinality: 0,N
Parameters: DataType, IndexDimension, DataSize
Child Nodes: Figure 39

Name: User defined
Label: Descriptor_t
See Figure: 3

Name: DataClass
Label: DataClass_t
See Figure: 3

Name: DimensionalUnits
Label: DimensionalUnits_t
See Figure: 3

Name: Rind
Label: Rind_t
See Figure: 5

Name: User defined
Label: UserDefinedData_t
See Figure: 3

Figure 9: FlowSolution_t and DiscreteData_t Data Structures

60

A CGNS File Mapping Figures

ZoneGridConnectivity Node
(See Figure 4)

Name: User defined
Label: GridConnectivity1to1_t
Data-Type: C1
Dimensions: 1
Dimension Values: Length of string
Data: ZoneDonorName
Cardinality: 0,N
Parameters: IndexDimension
Functions: None
Child Nodes: Figure 11

Name: User defined
Label: GridConnectivity_t
Data-Type: C1
Dimensions: 1
Dimension Values: Length of string
Data: ZoneDonorName
Cardinality: 0,N
Parameters: IndexDimension, CellDimension
Functions: PointListSize
Child Nodes: Figure 12

Name: User defined
Label: OversetHoles_t
Data-Type: MT
Cardinality: 0,N
Parameters: IndexDimension
Child Nodes: Figure 16

Name: User defined
Label: Descriptor_t
See Figure: 3

Name: User defined
Label: UserDefinedData_t
See Figure: 3

Note:
• GridConnectivity1to1 is only applicable to structured-to-structured 1-to-1 mesh

connectivity.

Figure 10: ZoneGridConnectivity_t Data Structure

61

SIDS-to-ADF File Mapping Manual

GridConnectivity1to1 Node
(See Figure 10)

Name: Transform
Label: “int[IndexDimension]”
Data-Type: I4
Dimensions: 1
Dimension Values: IndexDimension
Data: Transformation matrix (shorthand)
Cardinality: 0,1
Parameters: IndexDimension

Name: PointRange
Label: IndexRange_t
Data-Type: I4
Dimensions: 2
Dimension Values: IndexDimension,2
Data: Begin[], End[]
Cardinality: 1
Parameters: IndexDimension

Name: PointRangeDonor
Label: IndexRange_t
Data-Type: I4
Dimensions: 2
Dimension Values: IndexDimension,2
Data: Begin[], End[]
Cardinality: 1
Parameters: IndexDimension

Name: User defined
Label: Descriptor_t
See Figure: 3

Name: Ordinal
Label: Ordinal_t
See Figure: 4

Name: GridConnectivityProperty
Label: GridConnectivityProperty_t
Data-Type: MT
Cardinality: 0,1
Child Nodes: Figure 13

Name: User defined
Label: UserDefinedData_t
See Figure: 3

Note:
• GridConnectivity1to1 is only applicable to structured-to-structured 1-to-1 mesh

connectivity.

Figure 11: GridConnectivity1to1_t Data Structure

62

A CGNS File Mapping Figures

GridConnectivity Node
(See Figure 10)

Name: PointRange
Label: IndexRange_t
Data-Type: I4
Dimensions: 2
Dimension Values: IndexDimension,2
Data: Begin[], End[]
Cardinality: 0,1
Parameters: IndexDimension

Name: GridLocation
Label: GridLocation_t
See Figure: 9

Name: Ordinal
Label: Ordinal_t
See Figure: 4

Name: User defined
Label: Descriptor_t
See Figure: 3

Name: CellListDonor or PointListDonor
Label: IndexArray_t
Data-Type: I4
Dimensions: 2
Dimension Values: IndexDimension(donor),

PointListSize[]
Data: Cells or nodes on adjoining patch
Cardinality: 0,1
Parameters: IndexDimension,

PointListSize[]

Name: GridConnectivityProperty
Label: GridConnectivityProperty_t
See Figure: 13

Notes:
• The nodes PointRange and PointList are mutually exclusive.
• For mismatched interfaces, the combination of CellListDonor and InterpolantsDonor

is used to define the position of each receiver point in the donor zone.

Name: PointList
Label: IndexArray_t
Data-Type: I4
Dimensions: 2
Dimension Values: IndexDimension,

PointListSize[]
Data: Vector of nodes on current patch
Cardinality: 0,1
Parameters: IndexDimension,

PointListSize

Name: GridConnectivityType
Label: GridConnectivityType_t
Data-Type: C1
Dimensions: 1
Dimension Values: Length of string
Data: GridConnectivityType value
Cardinality: 0,1

Name: InterpolantsDonor
Label: DataArray_t
Data-Type: R4 or R8
Dimensions: 2
Dimension Values: CellDimension,

PointListSize[]
Data: Interpolants for each node
Cardinality: 0,1
Parameters: CellDimension,

PointListSize[]

Name: User defined
Label: UserDefinedData_t
See Figure: 3

Figure 12: GridConnectivity_t Data Structure

63

SIDS-to-ADF File Mapping Manual

GridConnectivityProperty Node
(See Figures 11, 12,)

Name: Periodic
Label: Periodic_t
Data-Type: MT
Cardinality: 0,1
Child Nodes: Figure 14

Name: AverageInterface
Label: AverageInterface_t
Data-Type: MT
Cardinality: 0,1
Child Nodes: Figure 15

Name: User defined
Label: Descriptor_t
See Figure: 3

Name: User defined
Label: UserDefinedData_t
See Figure: 3

Figure 13: GridConnectivityProperty_t Data Structure

64

A CGNS File Mapping Figures

Periodic Node
(See Figure 13)

Name: RotationCenter
Label: DataArray_t
Data-Type: R4
Dimensions: 1
Dimension Values: PhysicalDimension
Data: Coordinates of rotation center
Cardinality: 1
Child Nodes: Figure 39

Name: RotationAngle
Label: DataArray_t
Data-Type: R4
Dimensions: 1
Dimension Values: PhysicalDimension
Data: Rotation angle
Cardinality: 1
Child Nodes: Figure 39

Name: User defined
Label: Descriptor_t
See Figure: 3

Name: Translation
Label: DataArray_t
Data-Type: R4
Dimensions: 1
Dimension Values: PhysicalDimension
Data: Translation values
Cardinality: 1
Child Nodes: Figure 39

Name: DataClass
Label: DataClass_t
See Figure: 3

Name: DimensionalUnits
Label: DimensionalUnits_t
See Figure: 3

Name: User defined
Label: UserDefinedData_t
See Figure: 3

Figure 14: Periodic_t Data Structure

65

SIDS-to-ADF File Mapping Manual

AverageInterface Node
(See Figure 13)

Name: AverageInterfaceType
Label: AverageInterfaceType_t
Data-Type: C1
Dimensions: 1
Dimension Values: Length of string
Data: Description string
Cardinality: 1

Name: User defined
Label: Descriptor_t
See Figure: 3

Name: User defined
Label: UserDefinedData_t
See Figure: 3

Figure 15: AverageInterface_t Data Structure

66

A CGNS File Mapping Figures

OversetHoles Node
(See Figure 10)

Name: User defined
Label: Descriptor_t
See Figure: 3

Name: PointList
Label: IndexArray_t
See Figure: 12

Name: GridLocation
Label: GridLocation_t
See Figure: 9

Name: User defined
Label: IndexRange_t
Data-Type: I4
Dimensions: 2
Dimension Values: IndexDimension,2
Data: Begin[], End[]
Cardinality: 0,N
Parameters: IndexDimension

Name: User defined
Label: UserDefinedData_t
See Figure: 3

Note:
• The nodes PointRange and PointList are mutually exclusive. Use one format or the

other.

Figure 16: OversetHoles_t Data Structure

67

SIDS-to-ADF File Mapping Manual

ZoneBC Node
(See Figure 4)

Name: User defined
Label: Descriptor_t
See Figure: 3

Name: DataClass
Label: DataClass_t
See Figure: 3

Name: DimensionalUnits
Label: DimensionalUnits_t
See Figure: 3

Name: ReferenceState
Label: ReferenceState_t
See Figure: 3

Name: User defined
Label: BC_t
Data-Type: C1
Dimensions: 1
Dimension Values: Length of string
Data: BCType value
Cardinality: 0,N
Parameters: IndexDimension, PhysicalDimension
Child Nodes: Figure 18

Name: User defined
Label: UserDefinedData_t
See Figure: 3

Figure 17: ZoneBC_t Data Structure

68

A CGNS File Mapping Figures

BC Node
(See Figure 17)

Name: PointList
Label: IndexArray_t
Data-Type: I4
Dimensions: 2
Dimension Values: IndexDimension,

ListLength[]
Data: List of indices representing vertices

or boundary elements
Cardinality: 0,1
Parameters: IndexDimension, ListLength

Name: ElementList
Label: IndexArray_t
Data-Type: I4
Dimensions: 2
Dimension Values: IndexDimension,

ListLength[]
Data: List of indices representing boundary

elements
Cardinality: 0,1
Parameters: IndexDimension, ListLength

Name: InwardNormalIndex
Label: “int[IndexDimension]”
Data-Type: I4
Dimensions: 1
Dimension Values: IndexDimension
Data: Index of inward normal
Cardinality: 0,1
Parameters: IndexDimension

Name: PointRange
Label: IndexRange_t
Data-Type: I4
Dimensions: 2
Dimension Values: IndexDimension,2
Data: Begin[], End[]
Cardinality: 0,1
Parameters: IndexDimension

Name: ElementRange
Label: IndexRange_t
Data-Type: I4
Dimensions: 1
Dimension Values: 2
Data: Begin, end
Cardinality: 0,1

Name: GridLocation
Label: GridLocation_t
See Figure: 9

Name: BCProperty
Label: BCProperty_t
Data-Type: MT
Cardinality: 0,1
Child Nodes: Figure 21

Figure 18: BC_t Data Structure (Continued on next page)

69

SIDS-to-ADF File Mapping Manual

BC Node
(See Figure 17)

Name: ReferenceState
Label: ReferenceState_t
See Figure: 3

Name: DimensionalUnits
Label: DimensionalUnits_t
See Figure: 3

Name: DataClass
Label: DataClass_t
See Figure: 3

Name: User defined
Label: Descriptor_t
See Figure: 3

Name: User defined
Label: UserDefinedData_t
See Figure: 3

Name: Ordinal
Label: Ordinal_t
See Figure: 4

Notes:
• The nodes PointRange, PointList,

ElementRange, and ElementList provide
different ways of defining the patch.
Only one of them may be used.

• InwardNormalIndex is only meaningful for
structured zones.

Name: FamilyName
Label: FamilyName_t
Data-Type: C1
Dimensions: 1
Dimension Values: Length of string
Data: Name of CFD family
Cardinality: 0,1

Name: InwardNormalList
Label: IndexArray_t
Data-Type: R4 or R8
Dimensions: 2
Dimension Values: PhysicalDimension,

ListLength[]
Data: Vectors normal to patch pointing in
Cardinality: 0,1
Parameters: PhysicalDimension,

ListLength

Name: User defined
Label: BCDataSet_t
Data-Type: C1
Dimensions: 1
Dimension Values: Length of string
Data: BCTypeSimple value
Cardinality: 0,N
Parameters: ListLength
Functions: ListLength
Child Nodes: Figure 19

Figure 18: BC_t Data Structure (Continued from previous page)

70

A CGNS File Mapping Figures

BCDataSet Node
(See Figures 18, 43)

Name: DirichletData
Label: BCData_t
Data-Type: MT
Cardinality: 0,1
Functions: ListLength
Child Nodes: Figure 20

Name: NeumannData
Label: BCData_t
Data-Type: MT
Cardinality: 0,1
Functions: ListLength
Child Nodes: Figure 20

Name: GridLocation
Label: GridLocation_t
See Figure: 9

Name: PointRange
Label: IndexRange_t
See Figure: 18

Name: PointList
Label: IndexArray_t
See Figure: 18

Name: User defined
Label: Descriptor_t
See Figure: 3

Name: ReferenceState
Label: ReferenceState_t
See Figure: 3

Name: DataClass
Label: DataClass_t
See Figure: 3

Name: DimensionalUnits
Label: DimensionalUnits_t
See Figure: 3

Name: User defined
Label: UserDefinedData_t
See Figure: 3

Figure 19: BCDataSet_t Data Structure

71

SIDS-to-ADF File Mapping Manual

BCData Node
DirichletData or NeumannData

(See Figure 19)

Name: User defined
Label: Descriptor_t
See Figure: 3

Name: DataClass
Label: DataClass_t
See Figure: 3

Name: DimensionalUnits
Label: DimensionalUnits_t
See Figure: 3

Name: Data-name identifier or user defined
Label: DataArray_t
Data-Type: DataType
Dimensions: 1
Dimension Values: ListLength
Data: Vector of local BC data quantities
Cardinality: 0,N
Parameters: ListLength, DataType
Child Nodes: Figure 39

Name: Data-name identifier or user defined
Label: DataArray_t
Data-Type: DataType
Dimensions: 1
Dimension Values: 1
Data: Global BC data quantity
Cardinality: 0,N
Parameters: DataType
Child Nodes: Figure 39

Name: User defined
Label: UserDefinedData_t
See Figure: 3

Figure 20: BCData_t Data Structure

72

A CGNS File Mapping Figures

BCProperty Node
(See Figure 18)

Name: WallFunction
Label: WallFunction_t
Data-Type: MT
Cardinality: 0,1
Child Nodes: Figure 22

Name: Area
Label: Area_t
Data-Type: MT
Cardinality: 0,1
Child Nodes: Figure 23

Name: User defined
Label: Descriptor_t
See Figure: 3

Name: User defined
Label: UserDefinedData_t
See Figure: 3

Figure 21: BCProperty_t Data Structure

73

SIDS-to-ADF File Mapping Manual

WallFunction Node
(See Figure 21)

Name: WallFunctionType
Label: WallFunctionType_t
Data-Type: C1
Dimensions: 1
Dimension Values: Length of string
Data: Description string
Cardinality: 1

Name: User defined
Label: Descriptor_t
See Figure: 3

Name: User defined
Label: UserDefinedData_t
See Figure: 3

Figure 22: WallFunction_t Data Structure

74

A CGNS File Mapping Figures

Area Node
(See Figure 21)

Name: AreaType
Label: AreaType_t
Data-Type: C1
Dimensions: 1
Dimension Values: Length of string
Data: Description string
Cardinality: 1

Name: SurfaceArea
Label: DataArray_t
Data-Type: R4
Dimensions: 1
Dimension Values: 1
Data: Size of area
Cardinality: 1
Child Nodes: Figure 39

Name: RegionName
Label: DataArray_t
Data-Type: C1
Dimensions: 1
Dimension Values: 32
Data: Name of region
Cardinality: 1
Child Nodes: Figure 39

Name: User defined
Label: Descriptor_t
See Figure: 3

Name: User defined
Label: UserDefinedData_t
See Figure: 3

Figure 23: Area_t Data Structure

75

SIDS-to-ADF File Mapping Manual

FlowEquationSet Node
(See Figures 3, 4)

Name: GoverningEquations
Label: GoverningEquations_t
Data-Type: C1
Dimensions: 1
Dimension Values: Length of string
Data: GoverningEquationsType value
Cardinality: 0,1
Parameters: CellDimension
Child Nodes: Figure 25

Name: GasModel
Label: GasModel_t
Data-Type: C1
Dimensions: 1
Dimension Values: Length of string
Data: GasModelType value
Cardinality: 0,1
Child Nodes: Figure 26

Name: ViscosityModel
Label: ViscosityModel_t
Data-Type: C1
Dimensions: 1
Dimension Values: Length of string
Data: ViscosityModelType value
Cardinality: 0,1
Child Nodes: Figure 27

Name: ThermalRelaxationModel
Label: ThermalRelaxationModel_t
Data-Type: C1
Dimensions: 1
Dimension Values: Length of string
Data: ThermalRelaxationModelType value
Cardinality: 0,1
Child Nodes: Figure 31

Name: EquationDimension
Label: “int”
Data-Type: I4
Dimensions: 1
Dimension Values: 1
Data: EquationDimension value
Cardinality: 0,1

Name: ThermalConductivityModel
Label: ThermalConductivityModel_t
Data-Type: C1
Dimensions: 1
Dimension Values: Length of string
Data: ThermalConductivityModelType value
Cardinality: 0,1
Child Nodes: Figure 28

Name: TurbulenceModel
Label: TurbulenceModel_t
Data-Type: C1
Dimensions: 1
Dimension Values: Length of string
Data: TurbulenceModelType value
Cardinality: 0,1
Parameters: CellDimension
Child Nodes: Figure 30

Name: TurbulenceClosure
Label: TurbulenceClosure_t
Data-Type: C1
Dimensions: 1
Dimension Values: Length of string
Data: TurbulenceClosureType value
Cardinality: 0,1
Child Nodes: Figure 29

Figure 24: FlowEquationSet_t Data Structure (Continued on next page)

76

A CGNS File Mapping Figures

FlowEquationSet Node
(See Figures 3, 4)

Name: ChemicalKineticsModel
Label: ChemicalKineticsModel_t
Data-Type: C1
Dimensions: 1
Dimension Values: Length of string
Data: ChemicalKineticsModelType value
Cardinality: 0,1
Child Nodes: Figure 32

Name: EMMagneticFieldModel
Label: EMMagneticFieldModel_t
Data-Type: C1
Dimensions: 1
Dimension Values: Length of string
Data: EMMagneticFieldModelType value
Cardinality: 0,1
Child Nodes: Figure 34

Name: DimensionalUnits
Label: DimensionalUnits_t
See Figure: 3

Name: EMElectricFieldModel
Label: EMElectricFieldModel_t
Data-Type: C1
Dimensions: 1
Dimension Values: Length of string
Data: EMElectricFieldModelType value
Cardinality: 0,1
Child Nodes: Figure 33

Name: EMConductivityModel
Label: EMConductivityModel_t
Data-Type: C1
Dimensions: 1
Dimension Values: Length of string
Data: EMConductivityModelType value
Cardinality: 0,1
Child Nodes: Figure 35

Name: DataClass
Label: DataClass_t
See Figure: 3

Name: User defined
Label: Descriptor_t
See Figure: 3

Name: User defined
Label: UserDefinedData_t
See Figure: 3

Figure 24: FlowEquationSet_t Data Structure (Continued from previous page)

77

SIDS-to-ADF File Mapping Manual

GoverningEquations Node
(See Figure 24)

Name: User defined
Label: Descriptor_t
See Figure: 3

Name: DiffusionModel
Label: “int[1 + ... + IndexDimension]”
Data-Type: I4
Dimensions: 1
Dimension Values: f(IndexDimension)
Data: Diffusion term indices
Cardinality: 0,1
Parameters: CellDimension

Name: User defined
Label: UserDefinedData_t
See Figure: 3

Note:
• The diffusion model defined here is only applicable to structured zones.
• For a structured zone, IndexDimension = CellDimension.

Figure 25: GoverningEquations_t Data Structure

78

A CGNS File Mapping Figures

GasModel Node
(See Figure 24)

Name: User defined
Label: Descriptor_t
See Figure: 3

Name: DataClass
Label: DataClass_t
See Figure: 3

Name: DimensionalUnits
Label: DimensionalUnits_t
See Figure: 3

Name: Data-name identifier or user defined
Label: DataArray_t
Data-Type: DataType
Dimensions: 1
Dimension Values: 1
Data: Data quantity
Cardinality: 0,N
Parameters: DataType
Child Nodes: Figure 39

Name: User defined
Label: UserDefinedData_t
See Figure: 3

Figure 26: GasModel_t Data Structure

79

SIDS-to-ADF File Mapping Manual

ViscosityModel Node
(See Figure 24)

Name: User defined
Label: Descriptor_t
See Figure: 3

Name: DataClass
Label: DataClass_t
See Figure: 3

Name: DimensionalUnits
Label: DimensionalUnits_t
See Figure: 3

Name: Data-name identifier or user defined
Label: DataArray_t
Data-Type: DataType
Dimensions: 1
Dimension Values: 1
Data: Data quantity
Cardinality: 0,N
Parameters: DataType
Child Nodes: Figure 39

Name: User defined
Label: UserDefinedData_t
See Figure: 3

Figure 27: ViscosityModel_t Data Structure

80

A CGNS File Mapping Figures

ThermalConductivityModel Node
(See Figure 24)

Name: User defined
Label: Descriptor_t
See Figure: 3

Name: DataClass
Label: DataClass_t
See Figure: 3

Name: DimensionalUnits
Label: DimensionalUnits_t
See Figure: 3

Name: Data-name identifier or user defined
Label: DataArray_t
Data-Type: DataType
Dimensions: 1
Dimension Values: 1
Data: Data quantity
Cardinality: 0,N
Parameters: DataType
Child Nodes: Figure 39

Name: User defined
Label: UserDefinedData_t
See Figure: 3

Figure 28: ThermalConductivityModel_t Data Structure

81

SIDS-to-ADF File Mapping Manual

TurbulenceClosure Node
(See Figure 24)

Name: User defined
Label: Descriptor_t
See Figure: 3

Name: DataClass
Label: DataClass_t
See Figure: 3

Name: DimensionalUnits
Label: DimensionalUnits_t
See Figure: 3

Name: Data-name identifier or user defined
Label: DataArray_t
Data-Type: DataType
Dimensions: 1
Dimension Values: 1
Data: Data quantity
Cardinality: 0,N
Parameters: DataType
Child Nodes: Figure 39

Name: User defined
Label: UserDefinedData_t
See Figure: 3

Figure 29: TurbulenceClosure_t Data Structure

82

A CGNS File Mapping Figures

TurbulenceModel Node
(See Figure 24)

Name: User defined
Label: Descriptor_t
See Figure: 3

Name: DataClass
Label: DataClass_t
See Figure: 3

Name: DimensionalUnits
Label: DimensionalUnits_t
See Figure: 3

Name: Data-name identifier or user defined
Label: DataArray_t
Data-Type: DataType
Dimensions: 1
Dimension Values: 1
Data: Data quantity
Cardinality: 0,N
Parameters: DataType
Child Nodes: Figure 39

Name: DiffusionModel
Label: “int[1 + ... + IndexDimension]”
See Figure: 25

Name: User defined
Label: UserDefinedData_t
See Figure: 3

Note:
• The diffusion model as defined here is only applicable to structured zones.
• For a structured zone, IndexDimension = CellDimension.

Figure 30: TurbulenceModel_t Data Structure

83

SIDS-to-ADF File Mapping Manual

ThermalRelaxationModel Node
(See Figure 24)

Name: User defined
Label: Descriptor_t
See Figure: 3

Name: DataClass
Label: DataClass_t
See Figure: 3

Name: DimensionalUnits
Label: DimensionalUnits_t
See Figure: 3

Name: Data-name identifier or user defined
Label: DataArray_t
Data-Type: DataType
Dimensions: 1
Dimension Values: 1
Data: Data quantity
Cardinality: 0,N
Parameters: DataType
Child Nodes: Figure 39

Name: User defined
Label: UserDefinedData_t
See Figure: 3

Figure 31: ThermalRelaxationModel_t Data Structure

84

A CGNS File Mapping Figures

ChemicalKineticsModel Node
(See Figure 24)

Name: User defined
Label: Descriptor_t
See Figure: 3

Name: DataClass
Label: DataClass_t
See Figure: 3

Name: DimensionalUnits
Label: DimensionalUnits_t
See Figure: 3

Name: Data-name identifier or user defined
Label: DataArray_t
Data-Type: DataType
Dimensions: 1
Dimension Values: 1
Data: Data quantity
Cardinality: 0,N
Parameters: DataType
Child Nodes: Figure 39

Name: User defined
Label: UserDefinedData_t
See Figure: 3

Figure 32: ChemicalKineticsModel_t Data Structure

85

SIDS-to-ADF File Mapping Manual

EMElectricFieldModel Node
(See Figure 24)

Name: User defined
Label: Descriptor_t
See Figure: 3

Name: DataClass
Label: DataClass_t
See Figure: 3

Name: DimensionalUnits
Label: DimensionalUnits_t
See Figure: 3

Name: Data-name identifier or user defined
Label: DataArray_t
Data-Type: DataType
Dimensions: 1
Dimension Values: 1
Data: Data quantity
Cardinality: 0,N
Parameters: DataType
Child Nodes: Figure 39

Name: User defined
Label: UserDefinedData_t
See Figure: 3

Figure 33: EMElectricFieldModel_t Data Structure

86

A CGNS File Mapping Figures

EMMagneticFieldModel Node
(See Figure 24)

Name: User defined
Label: Descriptor_t
See Figure: 3

Name: DataClass
Label: DataClass_t
See Figure: 3

Name: DimensionalUnits
Label: DimensionalUnits_t
See Figure: 3

Name: Data-name identifier or user defined
Label: DataArray_t
Data-Type: DataType
Dimensions: 1
Dimension Values: 1
Data: Data quantity
Cardinality: 0,N
Parameters: DataType
Child Nodes: Figure 39

Name: User defined
Label: UserDefinedData_t
See Figure: 3

Figure 34: EMMagneticFieldModel_t Data Structure

87

SIDS-to-ADF File Mapping Manual

EMConductivityModel Node
(See Figure 24)

Name: User defined
Label: Descriptor_t
See Figure: 3

Name: DataClass
Label: DataClass_t
See Figure: 3

Name: DimensionalUnits
Label: DimensionalUnits_t
See Figure: 3

Name: Data-name identifier or user defined
Label: DataArray_t
Data-Type: DataType
Dimensions: 1
Dimension Values: 1
Data: Data quantity
Cardinality: 0,N
Parameters: DataType
Child Nodes: Figure 39

Name: User defined
Label: UserDefinedData_t
See Figure: 3

Figure 35: EMConductivityModel_t Data Structure

88

A CGNS File Mapping Figures

ConvergenceHistory Node
(See Figures 3, 4)

Name: User defined
Label: Descriptor_t
See Figure: 3

Name: DataClass
Label: DataClass_t
See Figure: 3

Name: DimensionalUnits
Label: DimensionalUnits_t
See Figure: 3

Name: Data-name identifier or user defined
Label: DataArray_t
Data-Type: User specified
Dimensions: 1
Dimension Values: Number of iterations
Data: Convergence history data
Cardinality: 0,N
Child Nodes: Figure 39

Name: NormDefinitions
Label: Descriptor_t
Data-Type: C1
Dimensions: 1
Dimension Values: Length of string
Data: Description of data
Cardinality: 0,1

Name: User defined
Label: UserDefinedData_t
See Figure: 3

Figure 36: ConvergenceHistory_t Data Structure

89

SIDS-to-ADF File Mapping Manual

IntegralData Node
(See Figures 3, 4)

Name: User defined
Label: Descriptor_t
See Figure: 3

Name: DataClass
Label: DataClass_t
See Figure: 3

Name: DimensionalUnits
Label: DimensionalUnits_t
See Figure: 3

Name: Data-name identifier or user defined
Label: DataArray_t
Data-Type: DataType
Dimensions: 1
Dimension Values: 1
Data: Data quantity
Cardinality: 0,N
Parameters: DataType
Child Nodes: Figure 39

Name: User defined
Label: UserDefinedData_t
See Figure: 3

Figure 37: IntegralData_t Data Structure

90

A CGNS File Mapping Figures

ReferenceState Node
(See Figures 3, 4)

Name: User defined
Label: Descriptor_t
See Figure: 3

Name: DataClass
Label: DataClass_t
See Figure: 3

Name: DimensionalUnits
Label: DimensionalUnits_t
See Figure: 3

Name: Data-name identifier or user defined
Label: DataArray_t
Data-Type: DataType
Dimensions: 1
Dimension Values: 1
Data: Reference state data
Cardinality: 0,N
Parameters: DataType
Child Nodes: Figure 39

Name: ReferenceStateDescription
Label: Descriptor_t
Data-Type: C1
Dimensions: 1
Dimension Values: Length of string
Data: Description of data
Cardinality: 0,1

Name: User defined
Label: UserDefinedData_t
See Figure: 3

Figure 38: ReferenceState_t Data Structure

91

SIDS-to-ADF File Mapping Manual

DataArray Node
(See Figures 5, 6, 7, 8, 9, 12, 14, 20, 23, 26, 27, 28, 29, 30,

31, 32, 33, 34, 35, 36, 37, 38, 45, 46, 47, 48, 49, 50)

Name: DimensionalExponents
Label: DimensionalExponents_t
Data-Type: R4 or R8
Dimensions: 1
Dimension Values: 5
Data: MassExponent, LengthExponent,

TimeExponent, TemperatureExponent,
AngleExponent

Cardinality: 0,1
Child Nodes: Figure 41

Name: DataConversion
Label: DataConversion_t
Data-Type: R4 or R8
Dimensions: 1
Dimension Values: 2
Data: ConversionScale, ConversionOffset
Cardinality: 0,1

Name: DataClass
Label: DataClass_t
See Figure: 3

Name: User defined
Label: Descriptor_t
See Figure: 3

Name: DimensionalUnits
Label: DimensionalUnits_t
See Figure: 3

Figure 39: DataArray_t Data Structure

92

A CGNS File Mapping Figures

DimensionalUnits Node
(See Figures 3, 4, 5, 7, 8, 9, 14, 17, 18, 19, 20, 24,
26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39,

45, 46, 47, 48, 49, 50)

Name: AdditionalUnits
Label: AdditionalUnits_t
Data-Type: C1
Dimensions: 2
Dimension Values: (32,3)
Data: AdditionalUnits value
Cardinality: 0,1

Figure 40: DimensionalUnits_t Data Structure

93

SIDS-to-ADF File Mapping Manual

DimensionalExponents Node
(See Figure 39)

Name: AdditionalExponents
Label: AdditionalExponents_t
Data-Type: R4 or R8
Dimensions: 1
Dimension Values: 3
Data: ElectricCurrentExponent,

SubstanceAmountExponent,
LuminousIntensityExponent

Cardinality: 0,1

Figure 41: DimensionalExponents_t Data Structure

94

A CGNS File Mapping Figures

Family Node
(See Figure 3)

Name: User defined
Label: Descriptor_t
See Figure: 3

Name: Ordinal
Label: Ordinal_t
See Figure: 4

Name: User defined
Label: FamilyBC_t
Data-Type: C1
Dimensions: 1
Dimension Values: Length of string
Data: BCType value
Cardinality: 0,1
Child Nodes: Figure 43

Name: User defined
Label: GeometryReference_t
Data-Type: MT
Cardinality: 0,N
Child Nodes: Figure 44

Name: RotatingCoordinates
Label: RotatingCoordinates_t
See Figure: 3

Name: User defined
Label: UserDefinedData_t
See Figure: 3

Figure 42: Family_t Data Structure

95

SIDS-to-ADF File Mapping Manual

FamilyBC Node
(See Figure 42)

Name: User defined
Label: BCDataSet_t
See Figure: 18

Figure 43: FamilyBC_t Data Structure

96

A CGNS File Mapping Figures

GeometryReference Node
(See Figure 42)

Name: User defined
Label: Descriptor_t
See Figure: 3

Name: GeometryFile
Label: GeometryFile_t
Data-Type: C1
Dimensions: 1
Dimension Values: Length of string
Data: Name of the geometry file
Cardinality: 1

Name: GeometryFormat
Label: GeometryFormat_t
Data-Type: C1
Dimensions: 1
Dimension Values: Length of string
Data: Name of the geometry format
Cardinality: 1

Name: User defined
Label: GeometryEntity_t
Data-Type: MT
Cardinality: 0,N

Name: User defined
Label: UserDefinedData_t
See Figure: 3

Figure 44: GeometryReference_t Data Structure

97

SIDS-to-ADF File Mapping Manual

BaseIterativeData Node
(See Figure 3)

Name: Data-name identifier or user defined
Label: DataArray_t
Data-Type: Context dependent or user defined
Dimensions: Context dependent or user defined
Dimension Values: Context dependent or

user defined
Data: Context dependent or user defined
Cardinality: 0,N
Parameters: DataType, dimension of data,

size of data
Child Nodes: Figure 39

Name: User defined
Label: Descriptor_t
See Figure: 3

Name: DataClass
Label: DataClass_t
See Figure: 3

Name: DimensionalUnits
Label: DimensionalUnits_t
See Figure: 3

Name: User defined
Label: UserDefinedData_t
See Figure: 3

Figure 45: BaseIterativeData_t Data Structure

98

A CGNS File Mapping Figures

ZoneIterativeData Node
(See Figure 4)

Name: Data-name identifier or user defined
Label: DataArray_t
Data-Type: C1 or user defined
Dimensions: 2 or user defined
Dimension Values: (32, NumberOfSteps) or

user defined
Data: Context dependent or user defined
Cardinality: 0,N
Parameters: DataType, dimension of data,

size of data
Child Nodes: Figure 39

Name: User defined
Label: Descriptor_t
See Figure: 3

Name: DataClass
Label: DataClass_t
See Figure: 3

Name: DimensionalUnits
Label: DimensionalUnits_t
See Figure: 3

Name: User defined
Label: UserDefinedData_t
See Figure: 3

Figure 46: ZoneIterativeData_t Data Structure

99

SIDS-to-ADF File Mapping Manual

RigidGridMotion Node
(See Figure 4)

Name: Data-name identifier or user defined
Label: DataArray_t
Data-Type: R4, R8, or user defined
Dimensions: Context dependent or user defined
Dimension Values: Context dependent or

user defined
Data: Context dependent or user defined
Cardinality: 1,N
Parameters: DataType, dimension of data,

size of data
Child Nodes: Figure 39

Name: User defined
Label: Descriptor_t
See Figure: 3

Name: DataClass
Label: DataClass_t
See Figure: 3

Name: DimensionalUnits
Label: DimensionalUnits_t
See Figure: 3

Name: User defined
Label: UserDefinedData_t
See Figure: 3

Figure 47: RigidGridMotion_t Data Structure

100

A CGNS File Mapping Figures

ArbitraryGridMotion Node
(See Figure 4)

Name: Data-name identifier or user defined
Label: DataArray_t
Data-Type: R4, R8, or user defined
Dimensions: IndexDimension
Dimension Values: DataSize[]
Data: Grid velocity values
Cardinality: 0,N
Parameters: IndexDimension, DataSize
Child Nodes: Figure 39

Name: User defined
Label: Descriptor_t
See Figure: 3

Name: DataClass
Label: DataClass_t
See Figure: 3

Name: DimensionalUnits
Label: DimensionalUnits_t
See Figure: 3

Name: GridLocation
Label: GridLocation_t
See Figure: 9

Name: Rind
Label: Rind_t
See Figure: 5

Name: User defined
Label: UserDefinedData_t
See Figure: 3

Figure 48: ArbitraryGridMotion_t Data Structure

101

SIDS-to-ADF File Mapping Manual

UserDefinedData Node
(See Figures 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,

17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30,
31, 32, 33, 34, 35, 36, 37, 38, 42, 44, 45, 46, 47, 48, 50)

Name: User defined
Label: Descriptor_t
See Figure: 3

Name: GridLocation
Label: GridLocation_t
See Figure: 9

Name: PointRange
Label: IndexRange_t
See Figure: 18

Name: PointList
Label: IndexArray_t
See Figure: 18

Name: DataClass
Label: DataClass_t
See Figure: 3

Name: DimensionalUnits
Label: DimensionalUnits_t
See Figure: 3

Name: DataArray# or user defined
Label: DataArray_t
Data-Type: I4, R4, R8, or C1
Dimensions: User defined
Dimension Values: User defined
Data: Data quantity
Cardinality: 0,N
Child Nodes: Figure 39

Name: FamilyName
Label: FamilyName_t
See Figure: 18

Name: User defined
Label: UserDefinedData_t
See Figure: 3

Name: Ordinal
Label: Ordinal_t
See Figure: 4

Figure 49: UserDefinedData_t Data Structure

102

A CGNS File Mapping Figures

Gravity Node
(See Figure 3)

Name: GravityVector
Label: DataArray_t
Data-Type: R4
Dimensions: 1
Dimension Values: PhysicalDimension
Data: Gravitational vector
Cardinality: 1
Child Nodes: Figure 39

Name: User defined
Label: Descriptor_t
See Figure: 3

Name: DataClass
Label: DataClass_t
See Figure: 3

Name: DimensionalUnits
Label: DimensionalUnits_t
See Figure: 3

Name: User defined
Label: UserDefinedData_t
See Figure: 3

Figure 50: Gravity_t Data Structure

103

	Brief Description of CGNS
	CGNS Documentation
	Description of the Documents
	CGNS Overview and Entry-Level Document
	A User's Guide to CGNS
	ADF User's Guide
	HDF Documentation
	Standard Interface Data Structures
	The SIDS-to-ADF File Mapping Manual
	The SIDS-to-HDF File Mapping Manual
	The CGNS Mid-Level Library

	Which Documents Do You Need?
	Prospective Users
	End Users
	Applications Code Developers
	CGNS System Developers

	How to Use This Document

	CGNS Background
	Purpose
	Participation and Brief History
	Scope

	Summary Description of ADF (Advanced Data Format)
	General Description of ADF
	ADF Files and the ADF Core
	The Conceptual Structure of ADF Files
	The ADF Mid-Level Library (projected)

	The Structure of an ADF Node
	The Node ID
	The Node Name
	The Label
	The Data Type
	The Number of Dimensions
	The Dimension Values
	The Data
	The Child Table

	General CGNS File Mapping Concepts
	Use of ADF Nodes in CGNS
	The Node ID
	The Node Name
	The Label
	The Data Type
	The Number of Dimensions
	The Dimension Values
	The Data
	The Child Table
	Cardinality
	Parameters
	Functions

	CGNS Databases
	Definition of a CGNS Database
	Location of CGNS Databases within ADF Files
	File Management

	Internal Organization of a CGNS Database
	The CGNSBase_t Node
	The CGNSLibraryVersion_t Node
	Topological Basis of CGNS Database Organization
	Topics Not Currently Covered

	Detailed CGNS Node Descriptions
	Basic CGNS Nodes
	Descriptor Group
	Descriptor_t
	Ordinal_t

	Physical Data Group
	DataClass_t
	DimensionalUnits_t
	AdditionalUnits_t
	DataConversion_t
	DimensionalExponents_t
	AdditionalExponents_t
	DataArray_t
	Integer Arrays

	Location and Position Group
	GridLocation_t
	Rind_t
	IndexRange_t
	IndexArray_t

	Auxiliary Data Group
	ReferenceState_t
	ConvergenceHistory_t
	IntegralData_t
	UserDefinedData_t
	Gravity_t

	Specialized Nodes
	Grid Specification
	GridCoordinates_t
	Elements_t
	Axisymmetry_t
	RotatingCoordinates_t

	Field Specification
	FlowSolution_t
	DiscreteData_t

	Connectivity Group
	Transform Node
	GridConnectivityType_t
	GridConnectivity1to1_t
	GridConnectivity_t
	GridConnectivityProperty_t
	Periodic_t
	AverageInterface_t
	OversetHoles_t
	ZoneGridConnectivity_t

	Boundary Condition Group
	InwardNormalIndex
	InwardNormalList
	BCData_t
	BCDataSet_t
	BC_t
	ZoneBC_t
	BCProperty_t
	WallFunction_t
	Area_t

	Equation Specification Group
	GoverningEquations_t
	GasModel_t
	ViscosityModel_t
	EquationDimension
	ThermalConductivityModel_t
	TurbulenceClosure_t
	TurbulenceModel_t
	ThermalRelaxationModel_t
	ChemicalKineticsModel_t
	EMElectricFieldModel_t
	EMMagneticFieldModel_t
	EMConductivityModel_t
	FlowEquationSet_t

	Family Group
	Family_t
	FamilyName_t
	FamilyBC_t
	GeometryReference_t
	GeometryFile_t
	GeometryFormat_t
	GeometryEntity_t

	Time-Dependent Group
	BaseIterativeData_t
	ZoneIterativeData_t
	RigidGridMotion_t
	ArbitraryGridMotion_t

	Structural Nodes
	Zone_t
	CGNSBase_t
	SimulationType_t
	ZoneType_t
	CGNSLibraryVersion_t

	CGNS File Mapping Figures

