
Parallel I/O for the CGNS system

Th. Hauser∗

Linux PC Clusters are a cost-effective platform for parallel computational fluid dynam-
ics (CFD) applications. However, obtaining high perfomance on these clusters is a non-trivial
problem, requiring tuning and design modifications to the code (and, in some cases, the hard-
ware itself). In this paper we present our investigations in optimizing I/O performance using
the portable CGNS file format. This format is becoming a standard interface for writing grid
and solution information in a portable way. However, the original interface does not provide
a mechanism for parallel data storage and access. In this work a parallel interface for writing
and reading CGNS datasets based on the parallel HDF5 interface is described. Our tests in-
dicate programming convenience and I/O performance improvement with the parallel CGNS
interface.

Introduction
Linux clusters can provide a viable and more cost

effective alternative to conventional supercomputers
for the purposes of computational fluid dynamics.
In some cases, the Linux supercluster is replac-
ing the conventional supercomputer as a large-scale,
shared-use machine. In other cases, smaller clusters
are providing dedicated platforms for CFD com-
putations. One important, often overlooked, issue
for large, three dimensional time-dependent simu-
lations is the input and output performance of the
CFD solver. The development of the CGNS system
(see12,15,16) has brought a standardized and robust
data format to the CFD community, enabling the ex-
change of information between the various stages of
numerical simulations. Unfortunately, the original
design and implementation of the CGNS interface
was not considering parallel applications, therefor
parallel access mechanisms are lacking. Parallel
CFD application reading and writing CGNS data
files must serialize access causing unnecessary bot-
tlenecks. One possible implementation of this seri-
alization is passing all data to a single process that
reads and writes all data to CGNS files.

This paper describes an alternate implementation
of of the CGNS interface using the Hierarchical
Data Format version 5 (HDF5)2 to improve the I/O
performance of the CGNS data format by imple-
menting parallel I/O capabilities. HDF5 is a widely

∗Department of Mechanical and Aerospace Engineering,
Utah State University, Logan, UT 84322

used portable file format for storing scientific data
in a hierarchical structure. It already supports par-
allel I/O, and its implementation is build on top
of MPI-IO, which is specified by the MPI-2 stan-
dard.6–8 Preliminary benchmark results for a CFD
application LESTool are presented. The paper is or-
ganized as follows. First related work is discussed,
then the design and implementation of the parallel
CGNS implementation is described. This section
is followed by experimental performance results.
The paper concludes with some ideas for future re-
search.

Related Work
Considerable research has been done on data ac-

cess for scientific applications. The work has fo-
cused on data I/O performance and data manage-
ment convenience. Three projects, MPI-IO, HDF5
and parallel netCDF (PnetCDF) are closely related
to this research.

MPI-IO is a parallel I/O interface specified in the
MPI-2 standard. It is implemented and used on a
wide range of platforms. The most popular imple-
mentation, ROMIO25 is implemented portably on
top of an abstract I/O device layer22,23 that enables
portability to new underlying I/O systems. One of
the most important features in ROMIO is collec-
tive I/O operations, which adopt a two-phase I/O
strategy18,20,21,24and improve the parallel I/O per-
formance by significantly reducing the number of
I/O requests that would otherwise result in many
small, noncontiguous I/O requests. However, MPI-
IO reads and writes data in a raw format without

1 OF 11

42nd AIAA Aerospace Sciences Meeting and Exhibit
5 - 8 January 2004, Reno, Nevada

AIAA 2004-1088

Copyright © 2004 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.



providing any functionality to effectively manage
the associated metadata, nor does it guarantee data
portability, thereby making it inconvenient for sci-
entists to organize, transfer, and share their applica-
tion data.

HDF is a file format and software, developed at
NCSA,for storing, retrieving, analyzing, visualiz-
ing, and converting scientific data. The most pop-
ular versions of HDF are HDF41 and HDF5.2 Both
versions store multidimensional arrays together
with ancillary data in portable, self-describing file
formats. HDF4 was designed with serial data ac-
cess in mind, whereas HDF5 is a major revision
in which its API is completely redesigned and now
includes parallel I/O access. The support for paral-
lel data access in HDF5 is built on top of MPI-IO,
which ensures its portability. This move undoubt-
edly inconvenienced users of HDF4, but it was a
necessary step in providing parallel access seman-
tics. HDF5 also adds several new features, such as
a hierarchical file structure, that provide application
programmers with a host of options for organizing
how data is stored in HDF5 files. Unfortunately this
high degree of flexibility can sometimes come at the
cost of high performance, as seen in previous stud-
ies14,19 .

Parallel-NetCDF13 is a library providing high-
performance I/O while still maintaining file-format
compatibility with Unidata’s NetCDF.17 In the par-
allel implementation the serial netCDF interface
was extended to facilitate parallel access. By build-
ing on top of MPI-IO, a number of interface advan-
tages and performance optimizations were obtained.
Preliminary test results show that the somewhat
simpler netCDF file format coupled with a parallel
API combine to provide a very high-performance
solution to the problem of portable, structured data
storage.

HDF5 background
The format of an HDF5 file on disk encompasses

several key ideas of the HDF4 and AIO file formats
as well as addressing some shortcomings therein.
The new format is more self-describing than the
HDF4 format and is more uniformly applied to data
objects in the file.

An HDF5 file appears to the user as a directed
graph. The nodes of this graph are the higher-level

HDF5 objects that are exposed by the HDF5 APIs:

• Groups

• Datasets

• Named datatypes

At the lowest level, as information is actually
written to the disk, an HDF5 file is made up of the
following objects:

• A super block

• B-tree nodes (containing either symbol nodes
or raw data chunks)

• Object headers

• A global heap

• Local heaps

• Free space

The HDF5 library uses these low-level objects
to represent the higher-level objects that are then
presented to the user or to applications through the
APIs. For instance, a group is an object header that
contains a message that points to a local heap and
to a B-tree which points to symbol nodes. A dataset
is an object header that contains messages that de-
scribe datatype, space, layout, filters, external files,
fill value, etc with the layout message pointing to
either a raw data chunk or to a B-tree that points to
raw data chunks (see Figure 1).

CGNS Background
The specific purpose of the CFD General Nota-

tion System (CGNS) project is to provide a standard
for recording and recovering computer data associ-
ated with the numerical solution of the equations
of fluid dynamics. The intent is to facilitate the
exchange of Computational Fluid Dynamics (CFD)
data between sites, between applications codes, and
across computing platforms, and to stabilize the
archiving of CFD data.

The CGNS system consists of two parts: (1)
the Standard Interface Data Structures, SIDS and
(2) the ADF library. The "Standard Interface Data
Structures" specification constitutes the essence of

2 OF 11



Fig. 1 Relationships among the HDF5 root group,
other groups, and objects

the CGNS system. While the other elements of the
system deal with software implementation issues,
the SIDS specification concerns itself with defining
the substance of CGNS. It precisely defines the in-
tellectual content of CFD-related data, including the
organizational structure supporting such data and

the conventions adopted to standardize the data ex-
change process.2 The SIDS are designed to support
all types of information involved in CFD analysis.
While the initial target was to establish a standard
for 3D structured multi-block compressible Navier-
Stokes analysis, the SIDS extensible framework
now includes unstructured analysis, configurations,
hybrid topology and geometry-to-mesh association.
Although the SIDS specification is independent of
the physical file formats, its design was targeted to-
wards implementation using the ADF Core library.
The "Advanced Data Format" (ADF) is a concept
defining how the data is organized in the storage me-
dia. It is based on a single data structure called an
ADF node,designed to store any type of data. Each
ADF file is composed of at least one node called
the "root". The ADF nodes follow a hierarchical ar-
rangement from the root node down.

Serial CGNS API

The SIDS conventions provide for the recording
of anextremely complete and flexible problem de-
scription. This section gives an overview of the
changes from ADF to HDF and the main data struc-
tures defined in the SIDS, as well as some examples
of the standardized nomenclature mapped to HDF5.

File Format changes for parallel I/O

Although the SIDS specification is independent
of the physical file formats, its design was targeted
towards implementation using the ADF Core li-
brary. Some of the language components used to
define the SIDS are meant to directly map into el-
ements of an ADF node. Furthermore, the data
structures specified in the SIDS are organized in a
hierarchical manner in accordance with the ADF
topology. The data sets typical of CFD analysis
tend to contain a small number of extremely large
data arrays. This implies that the I/O system must
efficiently store and process large data arrays. The
SIDS are designed to optimize the performance of
the data exchange process supported by the ADF
Core. A second implication of the nature of the
data resides in the opportunity to include thorough
description in the file with relatively little storage
overhead and performance penalty. For example,
the flow solution of a CFD analysis may contain
several millions values. Therefore, with little over-

3 OF 11



head, it is possible to include information describing
the flow variables stored, their location in the grid,
and the dimensional units or nondimensionalization
information associated with the data. The SIDS
specification takes advantage of this situation and
includes an extensive description of the information
contained in its data structures.

Other design considerations were the minimiza-
tion of duplicated data within the hierarchy and
the ability to include documentation throughout the
database. Whenever possible, generic data struc-
tures were developed to hold various types of CFD
information. On the other hand, consistency dic-
tated the development of specialized data structures
for certain types of CFD-related information. The
SIDS conventions provide for the recording of an
extremely complete and flexible problem descrip-
tion.

In our implementation we replaced the ADF core
library with a layer of HDF5. This made the
implementation of parallel I/O much easier and
still maintains the portability with the CGNS stan-
dard since the information about the CFD data is
described by the SIDS structure. Similar work
has been done by been done by Marc Poinot (off
the PyCGNS website pyCGNShttp://elsa.
onera.fr/CGNS/releases/ ).

CGNS Base Data Structure: CGNSBase_t

The data structure at the root of the CGNS tree
graph is calledCGNSBase_t. It is mapped to a
HDF5 group. It contains the dimensionality of the
computational grid (IndexDimension), mapped to
a HDF5 attribute and several sub-structures such
as the zones (structured or unstructured blocks),
mapped to a HDF5 group, constituting the CFD
model. TheCGNSbase_tincludes also the fam-
ily sub-structures where geometry-to-mesh associ-
ations are recorded. Additionally, auxiliary infor-
mation applicable to the entireCGNSBase_tdata
structure may be stored at this level, mapped to
HDF5 attributes. This includes the reference state
data, dimensional units, nondimensionalization in-
formation (DataClass_t), flow equation sets, doc-
umentation (Descriptor_t) and convergence history
data structures. The dimensionality of the computa-
tional grid (IndexDimension) is the solemandatory
element of this data structure. It is defined as the

number of indices needed to uniquely identify a ver-
tex within the grid. The zoneZont_t is mapped
similar to the base data structure.

Grid Coordinates: GridCoordinates_t

The physical coordinates of the computational
grid are defined by the grid coordinates data struc-
ture. This structure contains a list of data arrays rep-
resenting the individual components of the position
vector. It also provides a mechanism for identifying
rind-point data (dummy layers) included within the
position vector arrays. If necessary, the nondimen-
sionalization information and dimensional unitsub-
structures may also be defined. The data arrays
are mapped to HDF5 datasets. For parallel access
the datasets are accessed using HDF5 hyperslabs.
Hyperslabs are portions of datasets. A hyperslab
selection can be a logically contiguous collection of
points in a dataspace, or it can be regular pattern of
points or blocks in a dataspace.

Using CGNS in parallel Environments

Today most CFD applications are programmed to
run in parallel environments because of the increas-
ing requirements on data amount and computational
resources. It is highly desirable to develop a set of
parallel APIs for accessing CGNS files that employs
appropriate parallel I/O techniques. In the mean-
time, programming convenience is also important,
since scientific users may desire to spend minimal
effort on dealing with I/O operations. Before pre-
senting our parallel CGNS design, we discuss cur-
rent approaches for using netCDF in parallel pro-
grams in a message-passing environment.

The first and most straightforward approach is de-
scribed in the scenario of Figure 2 in which one
process is in charge of collecting/distributing data
and performing I/O to a single CGNS file using the
standard CGNS API. The I/O requests from other
processes are carried out by shipping all the data
through this single process. The drawback of this
approach is that collecting all I/O data on a single
process can easily cause an I/O performance bottle-
neck and may overwhelm its memory capacity.

In order to avoid unnecessary data shipping, an
alternative approach is to have all processes perform
their I/O independently using the serial CGNS API,
as shown in Figure 3 . In this case, all CGNS op-

4 OF 11



Fig. 2 Data access through single process using serial
CGNS API

erations can proceed concurrently, but over multiple
files, one for each process. However, managing a
CGNS dataset is more difficult when it is spread
across multiple files. This approach also violates
the CGNS design goal of easy data integration and
management.

Fig. 3 Data access using serial CGNS API accessing
multiple files independently and concurrently

A third approach introduces a new set of APIs
with parallel access semantics and optimized paral-
lel I/O implementation such that all processes per-
form I/O operations cooperatively or collectively
through the parallel CGNS library to access a sin-

gle CGNS file. This approach, as shown in Figure
4, both frees the users from dealing with details of
parallel I/O and provides more opportunities for em-
ploying various parallel I/O optimizations in order
to obtain higher performance. The details of this
parallel CGNS design and implementation will be
discussed in the next section.

Fig. 4 Data access using parallel CGNS API based
on HDF and MPI-I/O

Parallel CGNS
To facilitate convenient and high-performance

parallel access to netCDF files, we define a new par-
allel interface and provide a prototype implemen-
tation. Since a large number of existing users are
running their applications over CGNS, our paral-
lel CGNS design retains the original SIDS API and
introduces extensions which are minimal changes
from the original API. The parallel API is distin-
guished from the original serial API by prefixing the
C function calls with “cgp_” instead of “cg_” as in
the standard SIDS API.

Interface Design

Our parallel CGNS API is built on top of paral-
lel HDF5, which enables the implementation to be
simple.

In parallel CGNS a file is opened, operated, and
closed by the participating processes in a communi-
cation group. In order for these processes to operate
on the same file space, especially on the structural
information contained in the file header, a number

5 OF 11



of changes have been made to the original serial
CGNS API.

For the function calls that create/open a CGNS
file, an MPI communicator is added in the argu-
ment list to define the participating I/O processes
within the file’s open and close scope. By describ-
ing the collection of processes with a communica-
tor, we provide the underlying implementation with
information that can be used to ensure file consis-
tency during parallel access. An MPI Info object is
also added to pass user access hints to the imple-
mentation for further optimizations. Using hints is
not mandatory (MPI_INFO_NULL can be passed
in, indicating no hints). However, hints provide
users the ability to deliver the high-level access in-
formation to HDF5 and MPI-IO libraries. Tradi-
tional MPI-IO hints tune the MPI-IO implementa-
tion to the specific platform and expected low-level
access pattern, such as enabling or disabling cer-
tain algorithms or adjusting internal buffer sizes
and policies. These are passed through the HDF5
layer to the MPI-IO implementation. Hints can
be used to describe expected access patterns at the
CGNS level of abstraction, in terms of variables
and records. These hints can be interpreted by the
CGNS implementation and either used internally
or converted into appropriate MPI-IO hints. Paral-
lel files may be stored and accessed in great many
ways that depend on the operating system, partic-
ular devices used for storage and any middle ware
that may live in between. In order to optimize file
access the programmer may wish to provide addi-
tional information to MPI, in hope that MPI would
know what to do with it. Such information is re-
ferred to as hints and there is a special MPI con-
struct called the info object that is supposed to col-
lect all the hints. Once constructed the info object
can be passed toMPI_File_open, MPI_File_delete,
MPI_File_set_viewand MPI_File_set_info. It
should be understood though that any hints you may
wish to give MPI this way are only advisory and
what MPI is going to do with them is implementa-
tion dependent.

The same syntax and semantics is maintained for
the CGNS attribute functions, and inquiry functions
as the original ones. These functions are also made
collective to guarantee consistency of dataset struc-
ture among the participating processes in the same

MPI communication group. For instance, all pro-
cesses must call thewrite_zonefunctions with the
same values to get consistent dataset definitions.

Implementation

Parallel HDF5 uses a tree-like file structure that
is similar to the UNIX file system: the data is ir-
regularly laid out using super block, header blocks,
data blocks, extended header blocks, and extended
data blocks. Instead, parallel HDF5 uses dataspace
and hyperslabs to define the data organization, map
and transfer data between memory space and the file
space, and does bufferpacking/unpacking in a recur-
sive way. MPI-IO is used under this.

In HDF5 the header metadata is dispersed in sep-
arate header blocks for each object, and, in order
to operate on an object, it has to iterate through the
entire namespace to get the header information of
that object before accessing it. This kind of access
method may be inefficient for parallel access, partic-
ularly because parallel HDF5 defines the open/close
of each object to be a collective operation, which
forces all participating processes to communicate
when accessing a single object, not to mention the
cost of file access to locate and fetch the header in-
formation of that object. Further, HDF5 metadata is
updated during data writes in some cases. Thus ad-
ditional synchronization is necessary at write time
in order to maintain synchronized views of file
metadata.

The parallel CGNS implementation follows the
HDF5 model of parallel I/O very closely. HDF5
uses optional access template object to control the
file access mechanism. The general model in ac-
cessing an HDF5 file in parallel contains the follow-
ing steps:

• Setup access template

• File open

• Dataset open

• Dataset data access (zero or more)

• Dataset close

• File close

6 OF 11



Setup Access Template

Each processes of the MPI communicator creates
an access template and sets it up with MPI paral-
lel access information (communicator, info object,
access-mode).

File Open

All processes of the MPI communicator open an
HDF5 file by a collective call (cgp_open) with the
access template.

Independent Array Access

All processes of the MPI communicator open a
data array by a collective call (cgp_array_read).
This version supports only collective data array
open. Future version may support data arrays open
by a subset of the processes that have opened the
file. Each process may do independent and arbi-
trary number of data I/O access by independent calls
to the data array with the transfer template set for
independent access. (The default transfer mode is
independent transfer).

File close

All processes that have opened the file must close
the file by a collective call (cgp_close).

Performance Evaluation
LESTool - the CFD benchmark applications

The CFD code used for studying the parallel per-
formance on different cluster platforms, LESTool,
is a parallel CFD code under development at Utah
Sate University and at the University of Kentucky
for simulating challenging flows such as turbine
blade/flow interaction in support of NASA’s Low-
Pressure Turbine Physics program. The LESTool
code is portable and based on standard C++, C,
Fortran, OpenMP, and MPI. Complex engineer-
ing flows are simulated using high-order numeri-
cal schemes and Chimera overset grids to solve the
time-dependent, three-dimensional Navier-Stokes
equations.9 The code had previously been opti-
mized for SGI multi-processor platforms, leading
to high floating-point performance and good scaling
characteristics. LESTool has proved highly portable
both in its OpenMP/MPI version and the MPI only
version that is the focus of this paper.

The application is distributed by dividing the

computational domain into subblock. Boundary in-
formations is exchanged using so called ghost cells.
The data distribution is shown in Figure 5.

Grid block

virtual block boundaries

dummy points

data exchange

data exchange

da
ta

 e
xc

ha
ng

e

da
ta

 e
xc

ha
ng

e

Fig. 5 Block data distribution of the CFD code
LESTool

The code shows good scaling characteristics on a
number of platforms. The speedup, excluding the
I/O time is shown in Figure 6.

Fig. 6 Speedup on different cluster platforms for
LESTool

7 OF 11



Flat Neighborhood Networks
The Linux Cluster – FAUST

Fluid Athlon Utah State Testbed (FAUST) is a
cluster of 64 (plus 2 “hot spare”) AMD 2200+
Athlon XP (figure 7). Each PC contains 256MB
of main memory and four 100Mb/s Fast Ethernet
interfaces. Nine (plus one spare) 32-way Ethernet
switches are used in a Flat Neighboorhood topol-
ogy to interconnect the machines with low latency
and high bandwidth.

Fig. 7 Fluid Athlon Utah State Testbed (FAUST)

Flat Neighborhood Networks

Channel-bonding provides an inexpensive ap-
proach to increasing bandwidth, but is fundamen-
tally not scalable. An alternate, more scalable net-
work based on fast Ethernet is the Flat Neighbor-
hood Network. Briefly, the concept behind this net-
work topology is that if it is sufficient to share at
least one switch with each cluster node, all nodes do
not have to share the same switch. A switch defines
a local network neighborhood or subnet. If a node
has several NICs, it can belong to several neighbor-
hoods. For two nodes to communicate directly, they
simply use NICs that are in a neighborhood that the
two nodes have in common (see Figure 8).

Coincidentally, this flat, interleaved arrangement
of the switches results in unusually high bisection
bandwidth, approaching the same bisection band-
width that one would have if we had wire speed
switches wide enough to span the entire cluster
(i.e. a channel-bonded network). Having four NICs
available for simultaneous use in each PC also al-

Fig. 8 Flat Neighborhood Network

lows bypassing some of the I/O serialization that
using IP would imply with a single Gb/s NIC (or
a channel-bonded set of NICs) under Linux. How-
ever, to gain the advantages of FNNs, three impor-
tant challenges must be overcome:

1. Routing is not trivial; at a minimum, each
machine must have its own unique routing
table. Optimal routing using multiple NICs
as a higher-bandwidth channel is conceptu-
ally like channel bonding,3 but requires a
much more sophisticated implementation be-
cause this bonding is destination-sensitive (i.e.,
NICs may be used together when sending to
one PC, but grouped differently when sending
to another PC).

2. The network wiring pattern for a flat-
neighborhood network is typically not sym-
metric and often has poor physical local-
ity properties. This makes everything about
the network, especially physical construction,
somewhat more difficult.

3. It is not easy to design a wiring pattern that has
all of the desired (or necessary) properties.

These problems are solved by creating a genetic
search algorithm (GA)10 that can design an opti-
mized network, print color-coded wiring labels, and
construct the necessary routing tables. The GA
program is capable of optimizing the network de-
sign for any communication patterns or other char-
acteristics specified – an important new capability
beyond that of traditional networks. The complex-
ity of the design problem does explode when a
larger system is being designed with additional, sec-
ondary, optimization criteria (such as maximizing
the number of switches shared by PCs that com-
municate in various patterns). Because this search

8 OF 11



space is very large and the optimization criteria are
very general (often requiring simulation of each po-
tential network design), use of a genetic search algo-
rithm is much more effective than other means. The
complete GA network design process is described
in.5 Further improvements in the network perfor-
mance are possible using FNN advanced routing.4

Parallel Virtual File System

One area in which commercial parallel machines
have always maintained great advantage, however,
is that of parallel file systems. A production-quality
high-performance parallel file system has not been
available for Linux clusters, and without such a file
system, Linux clusters cannot be used for large I/O-
intensive parallel applications. The Parallel Virtual
File System (PVFS),11 is a parallel file system that
can provide high-performance I/O for Linux clus-
ters.

As a parallel file system, the primary goal of
PVFS is to provide high-speed access to file data for
parallel applications. In addition, PVFS provides
a clusterwide consistent name space, enables user-
controlled striping of data across disks on different
I/O nodes, and allows existing binaries to operate on
PVFS files without the need for recompiling.

Like many other file systems, PVFS is designed
as a client-server system with multiple servers,
called I/O daemons. I/O daemons typically run
on separate nodes in the cluster, called I/O nodes,
which have disks attached to them. Each PVFS file
is striped across the disks on the I/O nodes. Ap-
plication processes interact with PVFS via a client
library. PVFS also has a manager daemon that han-
dles only metadata operations such as permission
checking for file creation, open, close, and remove
operations. The manager does not participate in
read/write operations; the client library and the I/O
daemons handle all file I/O without the interven-
tion of the manager. The clients, I/O daemons, and
the manager need not be run on different machines.
Running them on different machines may result in
higher performance, however.

On FAUST all compute nodes are I/O servers and
clients. The master node is running the manager
daemon and is also a client of the parallel file sys-
tem. The PVFS is used as a temporary file system
for applications with parallel I/O enabled and large

I/O needs.

Performance results
For simulations than single processor speed or

multi-processor scalability, the implementation of
I/O can have noticeable effects on performance.
This is a particular concern for large domains and
for smaller clusters based on Fast Ethernet commu-
nication.

To address this, LESTool has a parallel CGNS I/O
implemented to improve the parallel performance of
the code. Our testing on an IBM SP2 shows good
scaling of the I/O using the parallel file system. In
figure 9 a comparison of I/O using parallel and se-
rial output methods is shown. The parallel version
shows constant I/O times independent of the num-
ber of processors whereas the serialization of the I/O
shows an increase of the I/O time with the number
of processors.

Fig. 9 Parallel IO on a parallel file system on a IBM
sp2

The following scaling results were obtained on
the Linux cluster FAUST. It is configured with a
scratch file system spanning all compute nodes con-
sisting of PVFS. A single block dataset has been
chosen to perform the I/O test. Data sizes of643

(8.2 MB), 1283 (57 MB) and2563 (417 MB) were
used to obtain the wall clock time and speedups.
In Figures 10 and 11 the wallclock time for par-
allel CGNS I/O is presented. For one node serial
CGNS I/O using HDF5 is used. All datasets show
a improvement in read performance except for 8
processors. Here the walltime peaks unexpectedly.

9 OF 11



Several reruns of the benchmark problem have not
shown any improvements.

Fig. 10 Walltime for parallel CGNS I/O using PVFS
for the 8.2 and 57 MB datasets

Fig. 11 Walltime for parallel CGNS I/O using PVFS
for 417 MB dataset

Figure 12 shows the speedup for reading sev-
eral datasets. Initially the speedup is increasing as
expect, but independent of the dataset size a slow
down in the neighborhood of 8 processors is ob-
served. Increasing the number of processors beyond
16 gives again speedup for the I/O performance.
Compared to Figure 9 which shows the serialized
performance which becomes worth with the number
of processors used to read a dataset, the improve-
ment using parallel CGNS and the PVFS on a Linux
cluster is satisfactory and shows the potential per-
formance improvements by using parallel I/O for
large scale CFD applications.

Fig. 12 Speedup for parallel CGNS I/O using PVFS

Conclusion and Future Work
Linux cluster computing appears to be the next-

generation of supercomputing, offering options
from large shared-use machines to small, dedicated,
single application systems. However, optimal use of
this systems for computational fluid dynamics will
require tuning the software for the new hardware ar-
chitectures. In this work the serial CGNS API was
extended with a prototype implementation of paral-
lel I/O for the CGNS system. By building on top
of HDF5 the implementation took advantage of the
already existing parallel HDF5 implementation on
top of MPI-IO. Preliminary tests show performance
improvements using the parallel CGNS system.

Future work could include the completion of a
production quality parallel CGNS API and making
it freely available to the high-performance comput-
ing CFD community. Testing on different platforms
and filesystem is also currently under way.

References
1Hdf4 home page. The National Center for Supercomput-

ing Applications.http://hdf.ncsa.uiuc.edu/hdf4.
html .

2Hdf5 home page, the national center for supercomputing
applications.http://hdf.ncsa.uiuc.edu/HDF5/ .

3Donald J. Becker, Thomas Sterling, Daniel Savarese,
Bruce Fryxell, and Kevin Olson. Communication overhead for
space science applications on the beowulf parallel workstation.
In Proceedings, High Performance and Distributed Computing,
1995.

4H. G. Dietz and T. I. Mattox. Compiler techniques for flat
neighborhood networks. Into appear in Conference Record of
the International Workshop on Programming Languages and
Compilers for Parallel Computing, New York, August 2000.

10 OF 11



5H. G. Dietz and T. I. Mattox. Klat2’s flat neighborhood
network. Inthe Extreme Linux track in the 4th Annual Linux
Showcase, Atlanta, GA, October 2000.

6Message Passing Interface Forum. Mpi-2: Extensions to
the message-passing interface.http://www.mpiforum.
org/docs/docs.html , July 1997.

7E. Gropp, E. Lusk, and R. Thakur.Using MPI-2: Ad-
vanced Features of the Message Passing Interface. MIT Press,
Canbridge, MA, 1999.

8W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A highper-
formance, portable implementation of the mpi messagepassing
interface standard.Parallel Computing, 22(6):789–828, 1996.

9Th. Hauser and P.G. Huang. A hierarchical paralleliza-
tion concept for a high-performance navier-stokes solver. In
Proceedings of International Conference on Parallel and Dis-
tributed Processing Techniques and Applications (PDPTA’99),
June 28 - July 1 1999.

10J. Holland.Adaptation in Natural and Artificial Systems.
PhD thesis, University of Michigan, Ann Arbor, MI, 1975.

11W.B Ligon III and R.B. Ross. Pvfs: Parallel virtual file
system. In Thomas Sterling, editor,Beowulf Cluster Comput-
ing with Linux, pages 391–430. MIT Press, November 2001.

12S. M. Legensky, D. E. Edwards, D. M. A. Poirier
R. H. Bush, C. L. Rumsey, R. R. Cosner, and C. E. Towne. Cfd
general notation system (cgns): Status and future directions. In
AIAA Paper 2002-0752, 2002.

13J. Li, Wei keng Liao, A. Choudhary, R. Ross, R. Thakur,
W. Gropp, R. Latham, and A. Siegel. Parallel netcdf: A high-
performance scientific i/o interface. InProceedings of the
Supercomputering 2003 Conference, Phoenix, AZ, November
2003.

14J. Li, W. Liao, A. Choudhary, and V. Taylor. I/o analysis
and optimization for an amr cosmology application. InPro-
ceedings of IEEE Cluster 2002, Chicago, IL, September 2002.

15D. Poirier, S. R. Allmaras, D. R. McCarthy, M. F. Smith,
and F. Y. Enomoto. The cgns system. InAIAA Paper 98-3007,
1998.

16D. M. A. Poirier, R. H. Bush, R. R. Cosner, C. L. Rumsey,
and D. R. McCarthy. Advances in the cgns database standard
for aerodynamics and cfd. InAIAA Paper 2000-0681, 2000.

17R. Rew and G. Davis. The unidata netcdf: Software for
scientific data access. InSixth International Conference on In-
teractive Information and Processing Systems for Meteorology,
Oceanography and Hydrology, Anaheim, CA, February 1990.

18J.M. Rosario, R. Bordawekar, , and A. Choudhary. Im-
proved parallel i/o via a two-phase run-time access strategy. In
IPPS ’93 Parallel I/O Workshop, February 1993.

19R. Ross, D. Nurmi, A. Cheng, and M. Zingale. A case
study in application i/o on linux clusters. InProceedings of
SC2001, Denver, CO, November 2001.

20R. Thakur, R. Bordawekar, A. Choudhary, and R. Pon-
nusamy. Passion runtime library for parallel i/o. InScalable
Parallel Libraries Conference, October 1994.

21R. Thakur and A. Choudhary. An extended two-phase
method for accessing sections of out-of-core arrays.Scientific
Programming, 5(4):301–317, 1996.

22R. Thakur, W. Gropp, , and E. Lusk. An abstract-
device interface for implementing portable parallel-i/o inter-
faces(adio). InProceedings of the 6th Symposium on the
Frontiers of Massively Parallel Computation, pages 180–187,
October 1996.

23R. Thakur, W. Gropp, , and E. Lusk. On implementing
mpi-i/o portably and with high performance. InProceedings of
the Sixth Workshop on Input/Output in Parallel and Distributed
Systems, pages 23–32, May 1999.

24R. Thakur, W. Gropp, and E. Lusk. Data sieving and col-
lective i/o in romio. InProceeding of the 7th Symposium on the
Frontiers of Massively Parallel Computation, pages 182–189,
February 1999.

25R. Thakur, R. Ross, E. Lusk, and W. Gropp. Users guide
for romio: A high-performance, portable mpi-io implemen-
tation. Technical Report Technical Memorandum No. 234,
Mathematics and Computer Science Division, Argonne Na-
tional Laboratory, Revised January 2002.

11 OF 11


