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Fundamental Aeronautics, Supersonics
High Altitude Emissions

Objectives

• Develop the necessary technologies 
to enable low emissions (gaseous 
and particulate) combustion systems 
to be developed for supersonic cruise 
applications.

• Develop and validate physics-based models to 
enable quantitative emissions and 
performance predictions at supersonic cruise 
conditions using Combustion CFD simulations.

• Develop and validate high temperature 
sensors for use in intelligent engines.

Axial Velocity Predictions of Lean Direct Injection Low NOx
Emissions Concept

Zero Axial Velocity Contours            Side View through center

Also - Fundamental Aeronautics, Subsonics,
Combustion
•Combustion Chemistry and Turbulence Modeling
•Particulates Sampling and Modeling
•Alternate Fuels
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90% NOx Reduction Combustion:
Multi-Point Lean Direct Injection

1. Energetic quick-mixing before auto ignition at high power condition
2. Lean and uniform front end makes less CO and NOx initially
3. Less CO initially, shorter combustor needed
4. Shorter combustor, shorter residence time, less additional NOx
5. Multiple injection points allow temporal and spatial fuel/air control 

- allows active fuel-shifting control to improve operability
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2. Reduced film cooling: reduced 
damping

3. More uniform temperature and 
composition

1. Higher-performance 
fuel injectors: more 
turbulence

4. No dilution holes: 
reduced flame-holding

Ultra-Lean-Burning Combustors 
Are More Susceptible to Thermo-Acoustic Instabilities
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Combustion Instability Control Strategy
Objective:  Suppress combustion thermo-acoustic instabilities when 

they occur
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Synergistic Technologies to Enable 
Ultra-Low Emissions Combustion
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Active Combustion Control - Technical Challenges
• Combustor dynamics largely unmodeled

• Noisy environment

• Liquid fuel – introduces additional unmodeled dynamics including 
time delay (atomization, vaporization, …)

• Actuation system – enough bandwidth and authority, not just valve 
(also feedline, injection, …)

• Simplified models needed for control design evaluation

• Control methods that can: 
– identify instability
– suppress instability in presence of large time delay, substantial 

noise, unmodeled dynamics

• Realistic experimental testbeds (combustor, actuation system)
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Combustor Instrumentation 
(pressures, temp’s)

Fuel Injector
Emissions Probe

Research combustor rig and models

Fuel delivery system model and hardware
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Fuel Flow

Active Combustion Instability Control Via Fuel Modulation
High-frequency fuel valve
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Combustion Dynamics Modeling

Detailed, physics-based dynamic 
models

Fundamental understanding of 
combustor dynamics to aid passive, 

active instability suppression

vt: -130 -115 -100 -85 -70 -55 -40 -25 -10 5 20 35 50

Penn State Injector 
Response Model Plot

Simplified Quasi-1D 
dynamic models

Allow physics-based control 
method validation

Results from NASA 
Sectored-1D Model of LPP 

Combustor Rig – D. Paxson
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High-Bandwidth Fuel Actuator 
Characterization Testing – J. Saus

Pressurized
Air Volume

P

Test
Valve

P

Pump

Accumulator

Dynamic Pressure
Transducers

Valve, Feed-system Characterization Rig at NASA GRC
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GaTech high-
response fuel valve 
in characterization 
rig in CE7A

Frequency Response Dynamic 
Characterization Data

High-Bandwidth Fuel Actuator

Fuel Delivery System Dynamic 
Response

Stroboscopic Image of 
Dynamic Fuel Injection
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Adaptive phase shifting control:
“Adaptive Sliding Phasor Averaged Control” – G. Kopasakis
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Model-Based Control:
“Multi-Scale Extended Kalman Control” – D.K. Le

EK States
Predictor 

Parameter
Tuning

Time-Scale 
Averaged 
Pressure 
Variance

Sensed
combustion

pressure

Fuel
modulation
command

Multi-Scale
Tones Analysis

Damper

Suppression

Phase Drift 
Estimation

Phase-Adjusted
Reconstruction



Controls and Dynamics Branch at Lewis Field
Glenn Research Center

100 200 300 400 500 600 700 800
0

2

4

6

8

10

12

Am
pl

itu
de

, p
si

Frequency, Hz

pla1c1, Run 423 and 425, 040527 - 040603

Active Combustion Instability Control 
Demonstrated Experimentally

Liquid-fueled combustor rig emulates engine 
observed instability behavior at engine 
pressures, temperatures, flows

Large amplitude, low-frequency instability 
suppressed by 90%

High-frequency, low-amplitude instability 
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Additional Test Results:
Harmonic-focused control provides over 90% reduction in pressure spectral
peak for large, low-frequency instability

Uncontrolled –vs- Controlled Instability Pressure

97% Reduction

~75% in peak amplitude reduction
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perturbations shows substantial interference with 315Hz instability
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• Increasing fuel flow increases 
530Hz combustion instability, 
preventing full-power operation

• Continuing research to 
demonstrate instability 
control/suppression:

– Apply advanced NASA 
modeling, control, actuation 
methods

Recent Results 
– Lean, Low-Emissions Combustor Instability Characterization

Active Control may extend lean, low-emissions combustor operationActive Control may extend lean, low-emissions combustor operation

Combustor Pressure Oscillations

Amplitude

Frequency
Spectra
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Simulation of Combustion Instabilities:
A Sectored-One-Dimensional Approach

Daniel E. Paxson
NASA Glenn Research Center

Cleveland, Ohio
216-433-8334

Daniel.E.Paxson@nasa.gov

Propulsion Controls and Diagnostics Workshop
Cleveland, Ohio, November 2007
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Discussion Outline

• Motivation
• Simulation Methodology Description
• Results
• Comments
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Motivation

• Low emission combustors may be susceptible to thermo-acoustic 
combustion instabilities.

• One possible solution to the this problem is active control.
• Successful active control design requires accurate modeling and 

simulation.
– The essential physical phenomena should be correctly captured (e.g. self-

excitation).
– Characterization and a control design necessitate rapid simulation (i.e. 

relative simplicity).
– Simulation must lend itself to implementing a variety of sensing and actuation 

strategies.

For combustor configurations in which the potential 
instabilities propagate axially, but which contain abrupt 
changes in cross sectional area, the method to be 
described can achieve the simulation goals.
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Sector 2

Sector 3

Injector Region

Combustor Region

Description-Simplifications

• One-Dimensional
• Perfect Gas

Within Each Sector:

Sector 1
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Description-Governing Equations

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+

−

+

=

ρuz
2
ρu

1
pu

ρup
ρu

F 2

2

γ

γ

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

+
γ

=

ρz
2

ρu
1)-(

p
ρu
ρ

w 2

γ

x),w(S
x

)w(F
t
w

=
∂

∂
+

∂
∂

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+−⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

∂
∂

+

++
−γ

+⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−γ

+
∂
∂

∂
∂

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

∂
∂

=

ss
t

*
t

r

ht0
s

0

t

2

*
t

0.75
2*

t

s

zmR
x
z

ScRex
m

QRq
1

mT
1)Pr(
T

2
u

xRex

uu
x
u

Rex

m

x),w(S

ε

ε

ρσ
ε

( )
⎭
⎬
⎫

⎩
⎨
⎧

<
>−

−=
igni

igniiign
210 TT;0

TT;TT1
z)ζρz(ζKR

)T(TQ iinfht −α=

• Reactive Euler Equations with 
Source Terms 

• MacCormack’s Method
– Fast
– Second Order Accurate

• Artificial Viscosity
– Baldwin-MacCormack
– Density Instead of Pressure

• Uniform Grid Spacing
– Relatively Course
– Requires Some “Tuning” (e.g. eddy 

viscosity, reaction rates)
• Sectors Joined With Compatible 

Boundary Conditions
– Multi-block Approach
– Nothing “Stored” @ Interface
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Initial Tests-Conical Pipe Acoustics

0.0

0.5

1.0

0.0 0.2 0.4 0.6 0.8 1.0
x/L

A
/A

*

Q-1-D
Sectored

pressure
measurement

excitation

0.9

1.0

1.1

1.2

0 10 20 30 40 50

Non-Dimensional Time

p/
p*

Sectored
Q-1-D

• Theoretical resonant frequencies 
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• 100 numerical cells. 
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Validation-Valveless Pulsejet
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• Geometry 
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Comparison With Experiment
GRC CE-5 LPP
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• Exhaust modeled as 
mass extraction.

• Cooling spray modeled 
as a high heat transfer 
region.

• Flame position adjusted 
with turbulent diffusivity 
distribution.

• Noise added at inlet 
boundary.

• 350 cells, CPU 
time=1600 integration 
time .
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Comparison With Experiment
Low Pressure, Low Mass Flow, Low Inlet Temperature

Computed
Measured
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Computed
Measured

Comparison With Experiment
High Pressure, High Mass Flow, High Inlet Temperature
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60 seconds of rig data during which f/a 
ratio increases from 0.028 to 0.03.

2.5 second simulation with linear fuel flow 
increase corresponding to f/a ratio change 
from 0.025-0.03.

Area ratio=0.17
P0=1.01
T0=1.00

ρ’u’=0.005

28.4 in. 35.7 in.

1.34 in.

D=12.0 in.
D=4.0 in.

D=2.1 in.

Area ratio=0.093
pr=0.545 (choked)

P4DynDn

P4DynUpfuel

air

Comparison With Experiment
GRC CE-5B-Stand1 LEC

• Dump tank cooling 
spray simulated with 
a choked (reflective) 
boundary condition.

• Amplitude variation 
with f/a matched.
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Sectored 1-D Model Concluding Remarks

• The sectored-one-dimensional technique has 
successfully simulated instabilities in a variety of 
combustors with complex geometries.

• Simulations run far from real-time, but fast enough 
for control design.

• Simulated plant responses to control match 
measured responses.

• Some success shown in prediction of instabilities, 
but “tuning” of some parameters is still required.

• More work is therefore needed to model complex 
phenomena in a 1-D compatible fashion.
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Active Combustion Control for 
Ultra Low Emissions in 

Aircraft Gas-Turbine Engines

Current Directions and Future Plans

John DeLaat
Controls and Dynamics Branch

Ph: (216) 433-3744
email: jdelaat@nasa.gov



Controls and Dynamics Branch at Lewis Field
Glenn Research Center

Current Directions and Future Plans

• Penn State and Virginia Tech
– Active fuel nozzle, flame transfer 

function

• Georgia Tech
– Integrated control of:

• Dynamic stability margin
• Static stability margin
• Dynamic stability mitigation

quartz combustor

Combustor test rig for flame response measurements

fuelfuel modulation 
actuator

LDI injector

2-D Spray Image

quartz combustor

Combustor test rig for flame response measurements

fuelfuel modulation 
actuator

LDI injector

2-D Spray Image
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Current Directions and Future Plans
• Current platform - lean combustor concept (not LDI)

– Actuator research for small “pilot” flows
– Dynamic model validation
– Instability control demonstration

• Future platform - LDI Multi-point injection
– Fundamentals rig in CE7C
– High pressure testing in CE5, ASCR
– Control methods that exploit multipoint injection
– Multidimensional models

• Incorporate technologies from NRA’s

• Harmonic, sub-harmonic models and control
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Opportunities for Collaboration

• NRA’s, SBIR – Watch solicitations.  Future topics TBD
• SAA’s – Have one in place, others welcome

• Requirements definition and feedback (engine, HW mfrs)
• Realistic testbeds for technology transfer
• Control methods integration and field testing
• Modeling methods field testing
• Multidimensional models development
• Actuator systems, associated models development, field testing
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Concluding Remarks  - Long Term Goal for Active Combustion Control

• Improve fundamental understanding of the 
combustor processes

in order to…
• More effectively integrate multi-point combustor 

design, controls, sensor, and actuator technologies 
to provide…

– An intelligent fuel/air management system with                 
temporal and spatial fuel modulation for

• Instability avoidance/suppression
– Thermoacoustics, blowout

• Pattern factor control
• Emissions minimization

to enable…
Combustors with extremely low emissions 
throughout the engine operating envelope 
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