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ABSTRACT The RSMs are good candidates for this effort due to the
The Low Reynolds number version of the Stressaodel and exactness of their production terms and their ability to better
the two equation ks model of Wilcox were used for the represent the flow history among other advantages.The exactness
calculation of turbulent heat transfer in a 180 degree turPf the production terms among other advantages has the potential
simulating an internal coolant passage. The Steessedel was to better simulate the stagnation flow, reattachment and curvature
chosen for its robustness. The turbulent thermal fluxes werBff€CtS. Advances in Reynolds Stress modeling are continuously
calculated by modifying and using the Generalized Gradienp®nd made. Much of the effort has been placed in the modeling
Diffusion Hypothesis. The results showed that using thiLf the pressure-strain correlation in these models which are of
Reynolds Stress model allowed better prediction of heat transfédnificant magnitude and are responsible for the redistribution
compared to the ke two equation model. This improvement between different components of the Reynolds Stress tensor. To
however required a finer grid and commensurately more cpinake the correlations valid near walls many authors use the so

time. called reflection terms which in most instances require the unit
wall normals to the wall. These quantities are not always clearly
INTRODUCTION definable away from walls and are thus not desirable. Some

Our computational turbine heat transfer group has long beewquers instead have tried to use.various_ invariances of t'he
interested in developing the necessary tools to compute tH¥ISOtropy of Reynolds Stress matrix for this purpose [4]. It is
external (blade surface) and internal (cooling passage) heBft the intent of this paper to provide a comprehensive summary
transfer. We have adopted theukmodel of Wilcox [1] for its  ©f RSMs and the interested reader may refer to [S] which is a
robustness and the absence of distance to the wall in i{€CENt review paper on this subject. More recently the method of
formulation. It was therefore natural for us to choose thef!llPtic relaxation which solves an additional set of six
Reynolds Stress model (RSM) based ondhequation of Wilcox differential equations to modify the redistribution tensor in the
[1] for our first venture into this type of modeling. vicinity of the vyalls has been gai.ning momentum[G]. The spheme

We have in the past presented the solution to the problem das been applied to some two dimensional or amsymmetnc cases
flow and heat transfer in a 180 degree channel[2] as predictdd-9], but has not yet been proven for three-dimensional complex
using the ke model. The geometry and experimental problems. Due to the inclusion of six additional equations the
measurements chosen come out of the work of Arts et al. [3]. ifomPutational cost is presumably much higher than the simpler
this work we will explore the use of the Stressmodel and ~alternative.
contrast the solutions using the two models.
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There have been attempts made to solve the heat transferthe underlined terms except for the last term.
problem in channels using RSMs. For example, lacovides and
Raisee[10], have performed internal cooling passage
calculations with a Reynolds Stress Model. lacovides, Launder _2
and Li[4] also applied their RSM model to flow and heat &ij = éséij 2)
transfer in a U bend. Recently Chen et al.[11,12] applied their
based RSM to an internal cooling channel heat transfer and Using the definition ofe = B;wk allowing for ‘isotropic
achieved good results. The RSM model used in that work was
reflection free and was applied all the way to the wall, although
the distance to the wall was used in a damping function. e = 23* k3. . 3)

The present Stregs-model is also valid all the way to the ij — 3ro 1]
wall[1]. It does not use reflection terms and there is no need for
wall functions or the use of a two layer model which have
limited validity. This feature would make the model useful in  Reece and Rodi(1975)[16] written as:
heat transfer calculations. The model was implemented in our

From the Kolmogorov hypothesis of local isotropy.

damping’ near walls,

The termr;; is the pressure-strain Correlation of Launder-

code Glenn-HT (NASA Glenn Heat Transfer Code) and solved 2 o - 205 [
. " M. = B*C,w; + =pkd = L —ZP3 4
using the code’s explicit scheme. =P 1(*)%'1 3P0 GWBD'J 3 g “)
; 265 0 2 O
NOMENCLATURE ~ B Py = 58 VPR ~ 550
Cp constant pressure specific heat
D hydraulic Diameter where
h heat transfer coefficient
k Kinetic energy of turbulence oU, ) ou_ ou._
Pr Prandtl number Pij = rimﬁ] +timE, Dj; = Timax. +ija_Xi
Re Reynolds number J
T static temperature and
‘ . P 0 . /P
y dimensionless distance from a walk, y - p = ;P ()
€ Turbulence dissipation rate 2 Kk
y specific heat ratio
T Reynolds stress also
W Specific dissipation rate of turbulence It
Ci = |0*py=d (6)
ijk Taxk
Subscripts
t total conditions For calculation ofv the standard equation is used [1]:
w wall value
0w 0w _ 0U; 2.0 0w
S pUj&—j = apoo/krijg)zl: - Bpw +6_Xk[(p + opT)a—Xl-(] @)
FORMULATION
above
Stress-Omega Model K K
: . . : vip =a*= and Re; = — (8)
As described in the introduction the Strasfkeynolds Stress w wv
model of Wilcox was adopted for the present work. The o _
equations for the Reynolds stressgs—plruj are given below: The closure coefficients are given as
. _ Og" +Rer/Ry 9
9,y i ) @ T ITRe /R, ©)
ot Kox,
U, u, 9 [ 0t 13 0g+ Re;/R 3+Rer/R
= 1, —d 1., ——peg. =M. + 2| p—4 - = = @ ©
- ~likgx, Tikax, Pl i +axk[”6xk ¥ ‘ﬂ(] @ 25 1+Re/R, 3ao Rey/ R (10)
where the terms underlined on the right hand side are modeled. x 4/15+Re;/R
g B = 0.090——o—— By (11)
1+(Rer/Rg) B

The Stresso model uses the ‘standard’ modeling practice for
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_ L+a,Rer/Ry

¢ TITRe /R, (12)

.. Re/R,

B= BmTeT/Rk (13)

___ Vo+Rer/Ry

V= Ve TiRe /R, (14)
5/3+Re;/R

C, = 9 T/ Tk (15)

T 5 1+Re /R,

where the constants with the  subscript are the constants of
the original LRR model for the pressure-strain correlation
model given as follows:

6, = (8+Cp/11 , fw = (8C,-2)/11 and
{., = (60C,—4)/55
_ 9 _ _13
B—l—zsz,O*—O——,CZ—EB
g =3B , o =0.105 , §, =0.007 (16)
R¢ =Ry =12 and R, =6.20 ,

Further definitions follow:

fg = %ﬁ D Xe = ‘%‘ B*, =0.09
fB* = 1if x,=<0 and
where  x, = 1 9k ow

oo30xj 0xj

K-w model
The k-w turbulence model of Wilcox [1] is used to model the

effects of the small scales of turbulence on the larger scales of
the mean flow. The version of the model used here incorporates

0w 0w _ i n2 2 0 0w
P53 +pUja—Xj = ao* Q" -Bpw +a—xj[(u+0uT)axj] (19)
The isotropiceddy viscosity is given by

_*k
ut—apa

Finally, in the original model the coefficients appearing in the
model are the following:

- - 3 puo

0 =05, B=B=0091fg (20)
4

5/18+ (Re;/R
g = __(eT—‘Bl) (21)

1+ (Rer/Rg)
_ag+(Rer/Ry) 27
@7 1+(Rer/Ry) (22)

_ g+ (Rep/Ry)
fu = 1+ (Re;/Ry) (23)

in the above

ap =1,a*;=0.025R, =6,R, =27
Following the suggestions of Menter [17], the production terms

are modified and written in terms of vorticity magnitu@eThis

reduces the overshoots of heat transfer rates in the vicinity of

stagnation points.

Turbulent Heat Flux

Both models integrates to the walls and no wall functions are
used. A value for Prandtl number (Pr) equal to 0.72 is used.
Viscosity is a function of temperature through a 0.7 power law
[18]andCp is taken to be a constant.

When using the 2-equation model for the calculation of
turbulent thermal fluxes, eddy viscosity model and a constant
value of 0.9 for turbulent Prandtl numbé&; was used. For the

Reynolds stress model the turbulent heat fluxes were calculated
using the Generalized Gradient Diffusion Hypothesis (GGDH)
given in for example lacovides et. al. [3] among other places.
—k 00

—u@auu; =

9% (24)
leox j

some improvements suggested by Menter (1993)[17]. Using the

original formulation of Wilcox, the model equations can be

written as follows:

ok ok _ 2_p* 0 9K 18
pat+pujdxj = U Q" -pp ook+a—xj[(p+0pT)an] (18)

NASA/CR—2002-211515 3

For our purposes we will rewrite the above in the following
form

(25)

rewriting using k andw, we found the following form



satisfactory for flow over flat plates. 7

0o = Uid; 98
4 = 3.3 o (26)

The ratio ofé can be regarded as an anisotropic turbulent
Prandtl number relating an anisotropic thermal diffusivity to an
isotropic momentum diffusivity.

Using the eddy viscosity hypothesis with a constant Prandtl
number in Stresss model as is done for the do- model &~
produced heat transfer results that were too low. This was foundX
to be due to the fact that the Strassmodel produces lower
levels of k than does thedsmodel. Figure 1.Sketch of the geometry

CHANNEL GEOMETRY AND FLOW CONDITIONS reasonable assumptions need to be made. Approximate values of
The test problem was taken from the experiment of Arts et k andw can be computed based on turbulence intensity and some
al.[6] It is an aggressive 180 degree turn channel with ameasure of a length scale. In cases such as the present where the

rectangular cross section. The inlet and exit channels have théow is sensitive to the exact values of k aadat the inlet, the
same cross section as shown in Fig. 1. The overall length of theprofiles need to be specified more carefully.
channel is 8W. The divider has a thickness of W/5 and extends |, ihe present problem the channel is extended upstream of

to within one width of the end wall. The divider has a semi- \yhere the inlet boundary condition is specified and heating
circular end. The experiments were performed for two channelsyeging For that reason an inlet profile corresponding to a fully
with gspect ratios (H/W) of' 1 and 0.5, the latter of which is developed channel flow is assumed. For the knodel this
considered here. The condition of symmetry has been used s@neification is done algebraically [2]. For the case where the
that only half of the channel has been gridded. In the yeriled boundary conditions on the Reynolds stresses are
experimental work two Reynolds Numbers were considered, o essary the approach taken was to solve the fully developed
namely 17,000 and 35,000. For the present numerical work the;annel flow and transfer the resulting profile to the inlet of the
channel Reynolds number of 17000 was simulated. 180 degree channel. The problem was solved on a grid identical
to the grid used at the inlet but extended in the axial direction. The
channel was not very long so in order to achieve fully developed
Computational Scheme flow, compressible flow periodicity in axial direction was

. : s . . enforced.
The simulations in this study were performed using a multi-

block computer code called Glenn-HT [2]. This code is a Exit: The static pressure is specified at the exit and other
general purpose flow solver designed for simulations of flows in Variables are extrapolated.

complicated geometries. The code solves the full compressible, Symmetry: Symmetry boundary conditions are trivial for all the
Reynolds-averaged Navier-Stokes equations using a multi-stagQariables except the Reynolds stresses some of which vanish and

Runge-Kutta-based multigrid method. It uses the finite volume others have a vanishing normal derivative to the symmetry plane.
method to discretize the equations. The code uses central

differencing together with artificial dissipation to discretize the ifiod as follows:
convective terms. The overall accuracy of the code is seconcPEC!led as Tollows:
order. To achieve good convergence the turbulen@zuation

COMPUTATIONAL METHOD

Walls: At solid walls the specific dissipation rat®, can be

_ e 0
and the Reynolds stresses were implicitly coupled in a w= SR%(U) wall (27)
pointwise fashion in the Runge-Kutta stage calculations.
o where
Boundary Conditions
U
Boundary condition treatment is dealt with in [2]. Here we 0 080LF ;¢ Kg<25
will not repeat the treatment of standard flow variables but S = BEKRD (28)
extend the discussion to include specification of Reynolds % 100 o o5
stresses. The boundaries are treated as follows. 0 Kg R

Inlet: At the inlet, the incoming profiles of k andneed to be

specified. Typically, the details of the profiles are unknown so @NdKg is equivalent sand-grain roughness height in turbulent

NASA/CR—2002-211515 4
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Figure 3.Velocity vectors (a) Downstream of the turn and (b) near
the bottom wall and (c¢) Streamline tracing the major vortices in
the flow.

wall units. Typically, Kz=5 is chosen, corresponding to a
hydraulically smooth surface.

The wall temperature is specified as a constant value for heat
transfer surfaces. The Reynolds stresses and the turbulent
Thermal fluxes are zero at the walls.

GEOMETRY MODELING AND GRID SYSTEM
Figure 1 shows a typical grid topology and the grid

constructed for this problem. It covers half of the channel and a

symmetric boundary condition is used. The multiblock grid
generated using a commercial package called GridPro, consists
approximately .34E6, .52E6 and 1.06E6 cells for the coarse,

medium and the fine grid. Grid spacing adjacent to the walls
Figure 2.(a) Grid Topology (b) Coarse Grid, (c) Medium Grid and  produce averaged dimensionless spacing (y+) near unity (Fig.
(d) Fine Grid and (e) distribution of y+ for grid ‘(d)’ 2(e) corresponding to grid ‘(d)’) with a stretching ratio of grid

NASA/CR—2002-211515 5



spacing away from the walls equal to 1.1 for the fine grid and /’—’

1.2 for the medium and coarse grid calculation. (:| [ __ :
RESULTS AND DISCUSSION ///7/;/ /,
In an earlier paper [2] we reported our flow and heat e

transfer solution for the present problem using the k-®
model. The calculations for that model were repeated here
for the sake of comparison of heat transfer results. The result
was identical to that presented here (as expected) but the grid
was 3.5 times coarser than the present Medium grid.

Figure 3 shows the details of the flow downstream of the
turn and very near the bottom wall of the channel as
predicted with the Reynolds Stress model on the fine grid.
The simulations show that the flow around the corner is quite
complex. Fig 3(a) shows the multiple vortices generated in ————————os0 S
the turn as Fig. 3(b) show the complex flow structure near the
bottom wall. One can discern a large vortex at the inner wall
of the turn with its axis generally in the normal to the bottom
wall direction. There is another vortex that starts near the
inner turn and generally follows the flow direction. This
vortex is accompanied by an opposing one on the other side
of the plane of symmetry. One can discern also a corner
vortex on the inner wall of the return leg with its axis in the
flow direction. Other vortical structures are also present as
evidenced by Figure 3.

Heat Transfer

Figure 4(a) shows the experimental measurement of the o
rate of heat transfer on the bottom wall in terms of a Nusselt —=
number ratio Nu/Nuy. The data is from the experimental
measurements of Arts et al. [16] and corresponds to an aspect e
ratio of 0.5 and Reynolds number of 18000. The contoursare ____— ———
Nusselt number ratio Nu/Nu0, where

Rig: ’% (29)

In this equation D is the hydraulic diameter and k is the
thermal conductivity evaluated at the reference temperature ————
Tref defined as the arithmetic average of the inlet and exit 7B

centerline temperatures. The heat transfer coefficient A is > .

defined by the following expression: ————— o ’;_5'7 ;r_‘_‘m C—

- Tw f‘}ref _\ N«] P
fo) =

Figure 4.Nu/Nu0 for the case of channel flow with AR=0.5 and
Nur = 0.023Re, 28p,04 (31) Red=17000. (a) Experimental measurement of Arts et al[16], (b)
0 b calculation using k-@ model and (c), (d) and (e) calculation using Stress-

; . @ model with the 340,000, 523,000 and 1.06E6 cells.
Figure 4b shows the calculated heat transfer rate using the

k- model. This was accomplished using the coarse grid.

h (30)

Nug is the Nusselt number for a fully developed channel
flow defined as:

NASA/CR—2002-211515 6
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