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3.4 Laminate Theory

MAC/GMC includes the capability to analyze general (symmetric and nonsym-
metric) composite laminates [9], see Fig. 4. Mid-plane strains and resultant forces
in the plane of the laminate may be applied. That is, the global laminate stress-
strain relation that is solved within MAC/GMC is expressed as,
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(EQ 17)
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where N, NI , ET, and M, MI , MT are the global laminate total, inelastic and
thermal force and moment resultants, respectively. The matrices A,B, and D are
the global laminate extensional, coupling and bending stiffnesses, respectively,
and, £ and K the global laminate mid-plane strain and mid-plane curvature,
respectively.

In forming the laminate extensional stiffness A the generalized method of cells
model, GMC, is utilized to calculate the individual lamina properties. In this regard,
the individual laminate stiffness, in lamina coordinates, Q is given by,
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in which the components of Q are given as,
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Q1 = Cll_C—33

Qp = CZZ_C—Q,?,

(EQ 19)

The Cij in the above are the effective macro properties for the unidirectional com-

posite lamina obtained from GMC.

It follows, employing a Kirchhoff-Love hypothesis, that the lamina stress-strain
relation in global (laminate) coordinates denoted by x-y is given by the relation,
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and 0 is the orientation of the longitudinal lamina axis with respect to the global x-
direction, see Fig. 4, thus Q, is the transformed lamina stiffness, i.e. from local

lamina to global laminate coordinates. In addition, g, is the lamina stress vector in
laminate coordinates. It then follows that the global laminate extensional stiffness

A is given by,

nly
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K=1
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in Whlﬁh nly is the total number of layers in the laminate and t, is the thickness of
the k" lamina. The coupling and bending stiffnesses can be similarly developed
and given by the following expressions:
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where zis the distance (considering the sign) to the top of layer k from the mid-
plane.

Returning to EQ. 17, the quantities NI and NT (the laminate inelastic and ther-
mal force resultants, respectively) are calculated from the individual lamina contri-
butions through the following relations,
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where the integrals in EQ. 27 are performed using second order gauss quadrature
which requires two integration points per layer. Thus all field quantities are tracked
at the two gauss quadrature points in each layer of the laminate in MAC/GMC.
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