NASA Logo - Web Link to NASA.gov

+ Text Only Site
+ Non-Flash Version
+ Contact Glenn

Go
ABOUT NASA NEWS AND EVENTS MULTIMEDIA MISSIONS MyNASA WORK FOR NASA
Computer drawing of a solid rocket engine with the equation
 for thrust. Thrust equals the exit mass flow rate times exit velocity
 plus exit pressure minus free stream pressure times nozzle area.

On this slide, we show a schematic of a solid rocket engine. Solid rocket engines are used on air-to-air and air-to-ground missiles, on model rockets, and as boosters for satellite launchers. In a solid rocket, the fuel and oxidizer are mixed together into a solid propellant which is packed into a solid cylinder. A hole through the cylinder serves as a combustion chamber. When the mixture is ignited, combustion takes place on the surface of the propellant. A flame front is generated which burns into the mixture. The combustion produces great amounts of exhaust gas at high temperature and pressure. The amount of exhaust gas that is produced depends on the area of the flame front and engine designers use a variety of hole shapes to control the change in thrust for a particular engine. The hot exhaust gas is passed through a nozzle which accelerates the flow. Thrust is then produced according to Newton's third law of motion.

The amount of thrust produced by the rocket depends on the design of the nozzle. The smallest cross-sectional area of the nozzle is called the throat of the nozzle. The hot exhaust flow is choked at the throat, which means that the Mach number is equal to 1.0 in the throat and the mass flow rate m dot is determined by the throat area. The area ratio from the throat to the exit Ae sets the exit velocity Ve and the exit pressure pe. You can explore the design and operation of a rocket nozzle with our interactive nozzle simulator program which runs on your browser.

The exit pressure is only equal to free stream pressure at some design condition. We must, therefore, use the longer version of the generalized thrust equation to describe the thrust of the system. If the free stream pressure is given by p0, the thrust F equation becomes:

F = m dot * Ve + (pe - p0) * Ae

Notice that there is no free stream mass times free stream velocity term in the thrust equation because no external air is brought on board. Since the oxidizer is mixed into the propellant, solid rockets can generate thrust in a vacuum where there is no other source of oxygen. That's why a rocket will work in space, where there is no surrounding air, and a gas turbine or propeller will not work. Turbine engines and propellers rely on the atmosphere to provide the oxygen for combustion and as the working fluid in the generation of thrust.

The thrust equation given above works for both liquid and solid rocket engines. There is also an efficiency parameter called the specific impulse which works for both types of rockets and greatly simplifies the performance analysis for rocket engines.


Activities:

Guided Tours


Navigation ..

Button to Display Model Rocket Index Button to Display Propulsion Index Button to Display Hypersonic Aero Index
Beginner's Guide Home Page

 

     First Gov Image


+ Inspector General Hotline
+ Equal Employment Opportunity Data Posted Pursuant to the No Fear Act
+ Budgets, Strategic Plans and Accountability Reports
+ Freedom of Information Act
+ The President's Management Agenda
+ NASA Privacy Statement, Disclaimer,
and Accessibility Certification

 

NASA Logo   
Editor: Tom Benson
NASA Official: Tom Benson
Last Updated: Jun 12 2014

+ Contact Glenn