NASA Logo - Web Link to NASA.gov Vertical Line

+ Text Only Site
+ Non-Flash Version
+ Contact Glenn

Go
ABOUT NASA NEWS AND EVENTS MULTIMEDIA MISSIONS MyNASA WORK FOR NASA
Computer drawing of a fighter plane showing the force vectors.
 Thrust minus drag determines the aircraft acceleration.

The propulsion system of an aircraft must perform two important roles:

  • During cruise, the engine must provide enough thrust, to balance the aircraft drag while using as little fuel as possible.
  • During takeoff and maneuvers, the engine must provide additional thrust to accelerate the aircraft.

Thrust T and drag D are forces and are vector quantities which have a magnitude and a direction associated with them. The thrust minus the drag of the aircraft is called the excess thrust and is also a vector quantity. Considering Newton's second law of motion, mass m times acceleration a is equal to the net external force F on an object:

F = m * a

For an aircraft, the horizontal net external force Fh is the excess thrust Fex.

Fex = Fh = T - D = m * a

Therefore, the acceleration of an aircraft is equal to the excess thrust divided by the mass of the aircraft.

a = (T - D) / m

The thrust divided by the mass of the aircraft is closely related to the thrust to weight ratio. Airplanes with high excess thrust, like fighter planes, can accelerate faster than aircraft with low excess thrust.

If the excess thrust and the mass remain constant, the basic equation of motion can be easily solved for the velocity and displacement as a function of time. This equation can be used only if the force (and the acceleration) are constant. Unfortunately for aircraft, drag is a function of the square of the velocity. So we can assume a constant force for only a very small amount of time. To solve the actual equations of motion for an aircraft, we must use calculus and integrate the equations of motion, either analytically or numerically.


Activities:
Button to Display Grade 6-8 Activity Button to Display Grade 9-12 Activity Button to Display Grade 9-12 Activity Button to Display Grade 9-12 Activity Button to Display Grade 9-12 Activity Button to Display Grade 11-12 Activity
Guided Tours
  • Button to Display Previous Page Forces on an Airplane: Button to Display Next Page
  • Button to Display Previous Page Gradual Climb: Button to Display Next Page


Navigation ..

Button to Display Aerodynamics Index Button to Display Propulsion Index
Beginner's Guide Home Page

 

     First Gov Image


+ Inspector General Hotline
+ Equal Employment Opportunity Data Posted Pursuant to the No Fear Act
+ Budgets, Strategic Plans and Accountability Reports
+ Freedom of Information Act
+ The President's Management Agenda
+ NASA Privacy Statement, Disclaimer,
and Accessibility Certification

 

NASA Logo   
Editor: Tom Benson
NASA Official: Tom Benson
Last Updated: Jun 12 2014

+ Contact Glenn