NASA Logo - Web Link to NASA.gov Vertical Line

+ Text Only Site
+ Non-Flash Version
+ Contact Glenn

Go
ABOUT NASA NEWS AND EVENTS MULTIMEDIA MISSIONS MyNASA WORK FOR NASA
Computer drawing of kids page link
This page is intended for college, high school, or middle school students. For younger students, a simpler explanation of the information on this page is available on the Kid's Page.

Computer drawing of an airliner showing the drag vector.

Drag is the aerodynamic force that opposes an aircraft's motion through the air. Drag is generated by every part of the airplane (even the engines!). How is drag generated?

Drag is a mechanical force. It is generated by the interaction and contact of a solid body with a fluid (liquid or gas). It is not generated by a force field, in the sense of a gravitational field or an electromagnetic field, where one object can affect another object without being in physical contact. For drag to be generated, the solid body must be in contact with the fluid. If there is no fluid, there is no drag. Drag is generated by the difference in velocity between the solid object and the fluid. There must be motion between the object and the fluid. If there is no motion, there is no drag. It makes no difference whether the object moves through a static fluid or whether the fluid moves past a static solid object.

Drag is a force and is therefore a vector quantity having both a magnitude and a direction. Drag acts in a direction that is opposite to the motion of the aircraft. Lift acts perpendicular to the motion. There are many factors that affect the magnitude of the drag. Many of the factors also affect lift but there are some factors that are unique to aircraft drag.

We can think of drag as aerodynamic friction, and one of the sources of drag is the skin friction between the molecules of the air and the solid surface of the aircraft. Because the skin friction is an interaction between a solid and a gas, the magnitude of the skin friction depends on properties of both solid and gas. For the solid, a smooth, waxed surface produces less skin friction than a roughened surface. For the gas, the magnitude depends on the viscosity of the air and the relative magnitude of the viscous forces to the motion of the flow, expressed as the Reynolds number. Along the solid surface, a boundary layer of low energy flow is generated and the magnitude of the skin friction depends on conditions in the boundary layer.

We can also think of drag as aerodynamic resistance to the motion of the object through the fluid. This source of drag depends on the shape of the aircraft and is called form drag. As air flows around a body, the local velocity and pressure are changed. Since pressure is a measure of the momentum of the gas molecules and a change in momentum produces a force, a varying pressure distribution will produce a force on the body. We can determine the magnitude of the force by integrating (or adding up) the local pressure times the surface area around the entire body. The component of the aerodynamic force that is opposed to the motion is the drag; the component perpendicular to the motion is the lift. Both the lift and drag force act through the center of pressure of the object.

There is an additional drag component caused by the generation of lift. Aerodynamicists have named this component the induced drag. This drag occurs because the flow near the wing tips is distorted spanwise as a result of the pressure difference from the top to the bottom of the wing. Swirling vortices are formed at the wing tips, which produce a swirling flow which is very strong near the wing tips and decreases toward the wing root. The local angle of attack of the wing is increased by the induced flow of the tip vortex, giving an additional, downstream-facing, component to the aerodynamic force acting on the wing. This additional force is called induced drag because it has been "induced" by the action of the tip vortices. It is also called "drag due to lift" because it only occurs on finite, lifting wings. The magnitude of induced drag depends on the amount of lift being generated by the wing and on the wing geometry. Long, thin (chordwise) wings have low induced drag; short wings with a large chord have high induced drag. Modern airliners use winglets to reduce the induced drag of the wing.

Additional sources of drag include wave drag and ram drag. As an aircraft approaches the speed of sound, shock waves are generated along the surface. There is an additional drag penalty (called wave drag) that is associated with the formation of the shock waves. The magnitude of the wave drag depends on the Mach number of the flow. Ram drag is associated with slowing down the free stream air as air is brought inside the aircraft. Jet engines and cooling inlets on the aircraft are sources of ram drag.

You can view a short movie of "Orville and Wilbur Wright" discussing the drag force and how it affected the flight of their aircraft. The movie file can be saved to your computer and viewed as a Podcast on your podcast player.


Activities:
Button to Display Grade K-6 Activity Button to Display Grade 6-8 Activity Button to Display Grade 9-12 Activity Button to Display Grade 9-12 Activity Button to Display Grade 9-12 Activity Button to Display Grade 11-12 Activity Button to Display Grade 11-12 Activity Button to Display Grade 11-12 Activity Button to Display Grade 11-12 Activity
Guided Tours
  • Button to Display Previous Page Sources of Drag: Button to Display Next Page
  • Button to Display Previous Page Factors that Affect Drag: Button to Display Next Page
  • Button to Display Previous Page Forces on an Airplane: Button to Display Next Page
  • Button to Display Previous Page Forces on a Glider: Button to Display Next Page


Navigation ..

Button to Display Aerodynamics Index
Beginner's Guide Home Page

 

     First Gov Image


+ Inspector General Hotline
+ Equal Employment Opportunity Data Posted Pursuant to the No Fear Act
+ Budgets, Strategic Plans and Accountability Reports
+ Freedom of Information Act
+ The President's Management Agenda
+ NASA Privacy Statement, Disclaimer,
and Accessibility Certification

 

NASA Logo   
Editor: Tom Benson
NASA Official: Tom Benson
Last Updated: Sep 10 2010

+ Contact Glenn