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An Introduction To Tensors
for Students of Physics and Engineering

Joseph C. Kolecki
National Aeronautics and Space Administration
Glenn Research Center
Cleveland, Ohio 44135

Tensor analysis is the type of subject that can make even the best of students shudder. My own
post-graduate instructor in the subject took away much of the fear by speaking of an implicit
rhythm in the peculiar notation traditionally used, and helped me to see how this rhythm plays its
way throughout the various formalisms.

Prior to taking that class, I had spent many years “playing” on my own with tensors. I found the
going to be tremendously difficult, but was able, over time, to back out some physical and
geometrical considerations that helped to make the subject a little more transparent. Today, it is
sometimes hard not to think in terms of tensors and their associated concepts.

This article, prompted and greatly enhanced by Marlos Jacob, whom I’ve met only by e-mail, is
an attempt to record those early notions concerning tensors. It is intended to serve as a bridge
from the point where most undergraduate students “leave off” in their studies of mathematics to
the place where most texts on tensor analysis begin. A basic knowledge of vectors, matrices, and
physics is assumed. A semi-intuitive approach to those notions underlying tensor analysis is
given via scalars, vectors, dyads, triads, and similar higher-order vector products. The reader
must be prepared to do some mathematics and to think.

For those students who wish to go beyond this humble start, I can only recommend my
professor’s wisdom: find the rAaythm in the mathematics and you will fare pretty well.

Beginnings
At the heart of all mathematics are numbers.

If I were to ask how many marbles you had in a bag, you might answer, “Three.” I would find
your answer perfectly satisfactory. The ‘bare’ number 3, a magnitude, is sufficient to provide the
information I seek.

If I were to ask, “How far is it to your house?”” and you answered, “Three,” however, [ would
look at you quizzically and ask, “Three what?” Evidently, for this question, more information is
required. The bare number 3 is no longer sufficient; I require a ‘denominate’ number — a number
with a name.

Suppose you rejoindered, “Three km.” The number 3 is now named as representing a certain
number of km. Such numbers are sometimes called scalars. Temperature is represented by a
scalar. The total energy of a thermodynamic system is also represented by a scalar.

If I were next to ask “Then how do I get to your house from here?”” and you said, “Just walk
three km,” again I would look at you quizzically. This time, not even a denominate number is
sufficient; it is necessary to specify a distance or magnitude, yes, but in which direction?
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“Just walk three km due north.” The denominate number 3 km now has the required additional
directional information attached to it. Such numbers are called vectors. Velocity is a vector since
it has a magnitude and a direction; so is momentum. Quite often, a vector is represented by
components. If you were to tell me that to go from here to your house I must walk three blocks
east, two blocks north, and go up three floors, the vector extending from “here” to “your house”
would have three spatial components:

e Three blocks east,
e Two blocks north,
e Three floors up.

Physically, vectors are used to represent locations, velocities, accelerations, flux densities, field
quantities, etc. The defining equations of the gravitational field in classical dynamics (Newton’s
Law of Universal Gravitation), and of the electromagnetic field in classical electrodynamics
(Maxwell’s four equations) are all given in vector form. Since vectors are higher order quantities
than scalars, the physical realities they correspond to are typically more complex than those
represented by scalars.

A Closer Look at Vectors

The action of a vector is equal to the sum of the actions of its components. Thus, in the example
given above, the vector from “here” to “your house” can be represented as

V =' 3 blocks east + 2 blocks north + 3 floors up

Each component of V contains a vector and a scalar part. The scalar and vector components of V
can be represented as follows:

e Scalar: Let a= 3 blocks, b =2 blocks, and ¢ = 3 floors be the scalar components; and

e Vector: Letibe aunit vector pointing east, j be a unit vector pointing north, and k be a
unit vector pointing up. (N.B.: Unit vectors are non-denominate, have a magnitude of
unity, and are used only to specify a direction.)

Then the total vector, in terms of its scalar components and the unit vectors, can be written as
V =ai+Dbj +ck.

This notation is standard in all books on physics and engineering. It is also used in books on
introductory mathematics.

Next, let us look at how vectors combine. First of all, we know that numbers may be combined
in various ways to produce new numbers. For example, six is the sum of three and three or the
product of two and three. A similar logic holds for vectors. Vector rules of combination include
vector addition, scalar (dot or inner) multiplication, and (in three dimensions) cross
multiplication. Two vectors, U and V, can be added to produce a new vector W:

W=U+V.

" The appropriate symbol to use here is “=” rather than “=" since the ‘equation’ is not a strict vector
identity. However, for the sake of clarity, the “=” notation has been suppressed both here and later on,

and “=" signs have been used throughout. There is no essential loss in rigor, and the meaning should be
clear to all readers.
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Vector addition is often pictorially represented by the so-called parallelogram rule. This rule is a
pencil and straightedge construction that is strictly applicable only for vectors in Euclidean
space, or for vectors in a curved space embedded in a Euclidean space of higher dimension,
where the parallelogram rule is applied in the higher dimensional Euclidean space. For example,
two tangent vectors on the surface of a sphere may be combined via the parallelogram rule
provided that the vectors are represented in the Euclidean 3-space which contains the sphere. In
formal tensor analysis, such devices as the parallelogram rule are generally not considered.

Two vectors, U and V can also be combined via an inner product to form a new scalar 1. Thus
U-V=n.

Example: The inner product of force and velocity gives the scalar power being delivered into (or
being taken out of) a system:

f(nt) - v(m/s) = p(W).

Example: The inner product of a vector with itself is the square of the magnitude (length) of the
vector:

U-u=U%

Two vectors U and V in three-dimensional space can be combined via a cross product to form a
new (axial) vector:

UxV=S

where S is perpendicular to the plane containing U and V and has a sense (direction) given by the
right-hand rule.

Example: Angular momentum is the cross product of linear momentum and distance:
p(kg m/s) x s(m) = L(kg m%/s).

Finally, a given vector V can be multiplied by a scalar number o to produce a new vector with a
different magnitude but the same direction. Let V = Vu where u is a unit vector. Then

oV =aVu=(aV)u==Eu
where  is the new magnitude.
Example: Force (a vector) equals mass (a scalar) times acceleration (a vector):
f(nt) = m(kg) a(m/s’)

where the force and the acceleration share a common direction.

Introducing Tensors: Magnetic Permeability and Material Stress

We have just seen that vectors can be multiplied by scalars to produce new vectors with the same
sense or direction. In general, we can specify a unit vector u, at any location we wish, to point in
any direction we please. In order to construct another vector from the unit vector, we multiply u
by a scalar, for example A, to obtain Au, a new vector with magnitude A and the sense or
direction of u.
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Notice that the effect of multiplying the unit vector by the scalar is to change the magnitude from
unity to something else, but to leave the direction unchanged. Suppose we wished to alter both
the magnitude and the direction of a given vector. Multiplication by a scalar is no longer
sufficient. Forming the cross product with another vector is also not sufficient, unless we wish to
limit the change in direction to right angles. We must find and use another kind of mathematical
‘entity.’

Let’s pause to introduce some terminology. We will rename the familiar quantities of the
previous paragraphs in the following way:

e Scalar: Tensor of rank 0.  (magnitude only — 1 component)
e Vector: Tensor of rank 1. (magnitude and one direction — 3 components)

This terminology is suggestive. Why stop at rank 1? Why not go onto rank 2, rank 3, and so on.

e Dyad: Tensor of rank 2. (magnitude and two directions — 3> = 9 components)
e Triad: Tensor of rank 3. (magnitude and three directions — 3° = 27 components)
e FEtcetera...

We will now merely state that if we form the inner product of a vector and a tensor of rank 2,a
dyad, the result will be another vector with both a new magnitude and a new direction. (We will
consider triads and higher order objects later.)

A tensor of rank 2 is defined as a system that has a magnitude and two directions associated with
it. It has 9 components. For now, we will use an example from classical electrodynamics to
illustrate the point just made.

The magnetic flux density B in volt-sec/m” and the magnetization H in Amp/m are related
through the permeability i in H/m by the expression

B = uH.

For free space, [l is a scalar with value [ (= o) = 41 x 107 H/m. Since [ is a scalar, the flux
density and the magnetization in free space differ in magnitude but not in direction. In some
exotic materials, however, the component atoms or molecules have peculiar dipole properties
that make these terms differ in both magnitude and direction. In such materials, the scalar
permeability is then replaced by the tensor permeability pu, and we write, in place of the above
equation,

B=pu-H.

The permeability p is a tensor of rank 2. Remember that B and H are both vectors, but they now
differ from one another in both magnitude and direction.

The classical example of the use of tensors in physics has to do with stress in a material object.
Stress has the units of force-per-unit-area, or nt/m’. It seems clear, therefore, that (stress) x
(area) should equal (force); i.e., the stress-area product should be associated with the applied
forces that are producing the stress. We know that force is a vector. We also know that area can
be represented as a vector by associating it with a direction, i.e., the differential area dS is a
vector with magnitude dS and direction normal to the area element, pointing outward from the
convex side.
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Thus, the stress in the equation (force) = (stress) X (area) must be either a scalar or a tensor. If
stress were a scalar, then a single denominate number should suffice to represent the stress at any
point within a material. But an immediate problem arises in that there are two different types of
stress: tensile stress (normal force) and shear stress (tangential force). How can a single
denominate number represent both? Additionally, stresses have directional properties more like
“vector times vector” (or dyad) than simply “vector.” We must conclude that stress is a tensor —
it is, in fact, another tensor of rank 2 — and that the force must be an inner product of stress and
area.

The force dF due to the stress T acting on a differential surface element dS is thus given by
dF=T-dS.

The right-hand side can be integrated over any surface within the material under consideration,
as is actually done, for example, in the analysis of bending moments in beams. The stress tensor
T was the first tensor to be described and used by scientists and engineers. The word tensor
derives from the Latin fensus meaning stress or tension.

In summary, notice that in the progression from single number to scalar to vector to tensor, etc.,
information is being added at every step. The complexity of the physical situation being modeled
determines the rank of the tensor representation we must choose. A tensor of rank 0 is sufficient
to represent a single temperature or a temperature field across a surface, for example, an aircraft
compressor blade. A tensor of rank 1 is required to represent the electric field surrounding a
point charge in space or the gravitational field of a massive object. A tensor of rank 2 is
necessary to represent a magnetic permeability in complex materials, or the stresses in a material
object or in a field, and so on...

Preliminary Mathematical Considerations

Let’s consider the dyad — the “vector times vector” product mentioned above — in a little more
detail. Dyad products were the mathematical precursors to actual tensors, and, although they are
somewhat more cumbersome to use, their relationship with the physical world is somewhat more
intuitive because they directly build from more traditional vector concepts understood by
physicists and engineers.

In constructing a dyad product from two vectors, we form the term-by-term product of each of
their individual components and add. If U and V are the two vectors under consideration, their
dyad product is simply UV. The dyad product UV is neither a dot nor a cross product. It is a
distinct entity unto itself. If U = uji + upj + usk and V = vii + v,j + vik, then

UV =uyviii + 111V2ij +uyvsik + U2V1ji -

where i, j, and Kk are unit vectors in the usual sense and ii, ij, ik, etc. are unit dyads. In forming
the product UV above, we simply “did what came naturally” (a favorite phrase of another of my
professors!) from our knowledge of multiplying polynomials in elementary algebra. Notice that,
by setting u;v; = 1, U;va = Wi, etc., this dyad can be rewritten as

UV = M]]ii + HlZij + }L13ik + }Lz]ji +---
and that the scalar components y;; can be arranged in the familiar configuration of a 3x3 matrix:

M1 M2 K13
H21 W22 W23
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H31 W32 W33

All dyads can have their scalar components represented as matrices. Just as a given matrix is
generally not equal to its transpose, so with dyads it is generally the case that UV # VU, i.e., the
dyad product is not commutative.

We know that a matrix can be multiplied by another matrix or by a vector. We also know that,
given a matrix, the results of pre- and post-multiplication are usually different; i.e., matrix
multiplication does not, in general, commute. This property of matrices is used extensively in
the “bra-“ and “ket-“ formalisms of quantum mechanics.

Using the known rules of matrix multiplication, we can, by extension, write the rules associated
with dyad multiplication.

The product of a matrix M and a scalar a is commutative. Let the scalar components of M be
represented by the 3 x 3 matrix [w;] 1, j = 1, 2, 3; (i.e., the scalar components of M can be
thought of as the same array of numbers shown above). Then for any scalar a, we find

oM = [ap] = [wja] = Mo
Similarly, the product of a dyad UV and a scalar o is defined as
a(UV) =(U)V=Uwn)V =U@V)=UVo) = (UV)o.
In this case, the results of pre- and post-multiplication are equal.

The inner product of a matrix and a vector, however, is not commutative. Let V = (V;) be a
row vector with1=1, 2, 3, and M = [p;] as before. Then, when we pre-multiply,

U=V M= (U)=[Z;Vipj]
where the summation is over the first matrix index i.
When we post-multiply with V = (V;) now re-arranged as a column vector,
W =M-V = (U= [T V]

where the summation is over the second matrix index j. It is clear that U* = U
Similarly, the inner product of the dyad UV with another vector S is defined to be

S-(UV)
when we pre-multiply, and

Uuv)-S

when we post-multiply. As with matrices, pre- and post-multiplication do make a difference to
the resulting object. To maintain consistency with matrix-vector multiplication, the dot
“attaches” as follows:

S-UV=(S-U)V=0V

where 6 =S - U. The result is a vector with magnitude ¢ and sense (direction) determined by V.
But
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UV-S=U(V:S)=UrL=AU
is a vector with magnitude A and sense determined by U. It should be clear that, in general,
S-UV-UV:-S.
Tensors of Rank > 2

Tensors of rank 2 result from dyad products of vectors. In an entirely analogous way, tensors of
rank 3 arise from triad products, UVW, and tensors of rank n arise from “n-ad” products of
vectors, UVW...AB. In three-dimensional space, the number of components in each of these
systems is 3". The rules governing these higher rank objects are defined in the same way as the
rules developed above.

Specific Statements for Tensors per se

We now extend the properties and rules of operation for familiar objects — scalars, vectors, and
matrices — to tensors per se. We will summarize our previous remarks in Items 1-5 and then
make definitive statements explicitly for tensors in Items 6—12.

1. All scalars are not tensors, although all tensors of rank 0 are scalars (see below).

2. All vectors are not tensors, although all tensors of rank 1 are vectors (see below).

3. All dyads or matrices are not tensors, although all tensors of rank 2 are dyads or
matrices.

4. We have examined, in some detail, properties and operating rules for scalars, vectors,

dyads, and matrices.

We now extend these rules to tensors per se. We assert that:

Tensors can be multiplied by other tensors to form new tensors.

The product of a tensor and a scalar (tensor of rank 0) is commutative.

The pre-multiplication of a given tensor by another tensor produces a different result

from post-multiplication; i.e., tensor multiplication in general is nof commutative.

9. The rank of a new tensor formed by the product of two other tensors is the sum of their
individual ranks.

10. The inner product of a tensor and a vector or of two tensors is not commutative.

11. The rank of a new tensor formed by the inner product of two other tensors is the sum of
their individual ranks minus 2.

12. A tensor of rank n in three-dimensional space has 3" components.

PN

Re-examining Magnetic Permeability and Material Stress

Now we can see why the magnetic permeability (the stress in a material object) must be a rank 2
tensor. In this section and the next, we will use a more formal approach, proceeding more in the
style of a mathematician writing a proof than a physicist or engineer solving a problem. While
the approach is formal, the conclusions are physically as well as mathematically valid.

Let’s begin with the magnetic field. We use the tensor form
B=pu-H

and represent the tensor permeability by a dyad w = UV without concern for the specific natures
of the vectors U and V. This step is perfectly valid. Even though we cannot specify the exact
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physical natures of U and V, we understand that a second rank tensor and a dyad are equivalent
provided the vectors U and V are appropriately chosen. We make this assumption without loss of
generality. From the physicist/engineer perspective, it is only significant that

e the dyad UV represents a physical quantity —i.e., permeability W; and
e the rules developed in the previous section can be applied to the dyad representation in a
strictly formalistic way to advance the argument at hand.

With these ideas in mind, we write
B=UV-H=U(V-H)=UA=AU

where A =V - H is a scalar and U a vector. It is clear that the direction of B depends only on the
direction of U, not H. Since we specified nothing about the nature of U, U cannot be restricted in
its magnitude or direction by H in any way. Therefore, we conclude that the direction of B must
be independent of the direction of H.

In tensor (or, in this case, matrix) notation, we might represent the scalar components of the
magnetization vector by H; and the permeability scalar components by a Cartesian matrix [lg.
The flux density then becomes a Cartesian vector whose scalar components are B where

By =2 ug Hy

with summation occurring over the repeated index, t. This last representation has become the
standard in the literature.

Similarly, if we represent material stress as a dyad, for example, T = UV (again, without concern
for the specific nature of U and V), then the inner product T - dS, can be represented as

T-dS=(UV)-dS=U(V-dS)=Ud(

where dC is the scalar differential resulting from the inner product V - dS. The term U d{ is a
vector (tensor of rank 1) and is, in fact, the differential force dF acting on the area element

U d¢ = dF.

Changing Tensor Rank: Contraction

It is inevitable in an article of this type that we must do some mathematics. The previous section
used a more formal (less intuitive) approach to demonstrate one role that tensors play in physics
and engineering. In this section, we will stay with the formal approach and define yet another,
perhaps somewhat peculiar, tensor operation, which will be left without much physical (intuitive)
consideration. The student, who so wishes, can skip over this section without loss.

We begin by summarizing the relationship between the type of vector product being used and the
rank of the resulting object. These results are already implicit in the material given above.

e A vector-scalar product results in a vector: there is no change in rank.

e A vector-vector dyad product results in a dyad: there is an increase in rank from rank 1
(vector) to rank 2.

e A vector-vector inner product usually results in a scalar: there is a decrease in rank from
rank 1 (vector) to rank O (scalar).

e Andsoon...
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Except for the inner product, the rank of the resulting quantity is the sum of the ranks of the
quantities being combined. So, if we form a triad UVW, its components comprise a tensor of
rank 3. If we form a “tetrad,” its components comprise a tensor of rank 4. And so on...

Now it is time to introduce that “somewhat peculiar’” new rule. Please rest assured that its
practical usefulness is fully attested in all of the advanced works in physics and engineering
where tensors are applied.

Let’s say that we have a vector “n-ad,”
UVW...ABC

H_J

n vectors

We can form a new tensor by introducing a dot between any two consecutive terms. Thus, we
might choose to introduce a dot between U and V, or V and W, etc. This process is called
contraction, and results in a new tensor with rank (n — 2).

e If we introduce a dot into an existing dyad, the dyad is contracted to a scalar. Thus, given
the dyad UV, we can introduce the dot forming a new tensor U « V, which is a scalar.
And there is a reduction in rank by two. A special case of interest is the dyad UU.
Contraction of the dyad gives the squared magnitude of the vector U: U - U = U2

e Ifwe introduce a dot into an existing triad, the triad is contracted to a vector. Given the
triad UVW, we can introduce a dot in one of two ways, forming either U - VW or UV -
W, either of which is a vector, since

U:-VW=(U": V)W = oW where (0.= U-V)
or
UV-W=U(V-W)= (V-W)U= BU where (B=V+W).

Notice that the two results are different — depending on the placement of the dot.

Contraction of a tensor of rank (n) always results in another tensor of rank (n — 2). If we were to
form the force-velocity dyad FV, as might be done in formulating the general equations of fluid
dynamics, we could always find the rate of energy dissipated in the fluid (the power) by
contracting the dyad to a scalar. Thus

dE/dt=F-V.

Essentially, given a tensor equation of rank n, it is possible to extract information from the
equation in a variety of ways. The ability of tensor equations both to store information and to
permit its simple manipulation should be coming clear by now!

Invariance of Physical Quantities: Introducing Coordinate Transformations

Tensors are typically defined by their coordinate transformation properties. The transformation
properties of tensors can be understood by realizing that the physical quantities they represent
must appear in certain ways to different observers with different points of view.

Suppose, for example, that [ measure the temperature (°C) at a given point P at a given time. You
also measure the temperature (°C) at P at the same time but from a different location that is in
motion relative to my location. Would it make any sense if you and I acquired different
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magnitudes; i.e., if my thermometer measured 25°C and yours measured 125°C? No. We must
both obtain the same quantity from our respective measurements.

Put another way, suppose that I call my point of view (coordinate system or reference frame) K
and yours K*. Let T be the temperature (°C) measured at P in K and T* be the temperature (°C)
measured in K*. We then require

T=T*

This expression is an example of a coordinate transformation law between K and K* for the
scalar temperature T. Only scalars that transform like this are to be admitted into the class of
tensors of rank 0. In fact, letting T stand for any scalar quantity we wish, the equation T = T* can
be taken as the definition of a tensor of rank 0.

Now let T be the frequency of light emanating from a monochromatic source at P. Again, let two
observers, K and K*, measure the frequency of the light at P at the same time using the same
units of inverse seconds. If | am stationary relative to the source, the light will have a certain
frequency, for example T = v. If, on the other hand, you are moving toward or away from the
source when you take your measurement, the light will be red or blue shifted with frequency T*
=1vy = Av. Obviously T # T* in this case, and although the frequency thus observed is a scalar, it
is evidently, not a tensor of rank 0.

A similar argument holds for vectors. As was the case with scalars, not all vectors are tensors of
rank 1. Suppose that a vector quantity V exists at a point P. Again, assume two reference frames,
K and K*. Let V be the vector observed (measured) in K, and V* be the same vector observed in
K* at the same time. As with the temperature example, we again require that

V=v*

since, after all, K and K* are both observing the self-same vector. Any other result would not
make physical sense. Any vector that transforms according to the expression V = V* is defined
to be a tensor of rank 1. We usually say that the transformation law T = T*, or V = V*, requires
the quantity represented by T or V to be coordinate independent.

While the vector itself is coordinate independent, its individual components are not. Thus, in the
vector transformation law V = V*, the components of the vector vary from system to system, but
do so in such a way that the vector quantity itself remains unchanged. This truth is evident when
we realize that the components in any coordinate system are nothing more than the projections of
the vector onto the local coordinate axes.

Many representations exist for vectors in Euclidean 3-space, the space of our school algebra and
geometry, including the familiar V=oa i+ 3 j + v k in which V is the vector being represented; a,
B, and vy are its scalar components along the x, y, and z axes of a Cartesian reference system,
respectively; and i, j, and k are unit vectors along those same axes. Another representation of V
is as a triad of numbers, V = (a, B, 7).

In the more general case of higher dimensional spaces, whether Euclidean or non-Euclidean,
vectors are represented by a number array — a row or a column. Thus, if V were a vector in E, or
R; (Euclidean or Riemannian n-space) it would be written as

V = (Vla V2, . Vn)

or simply, V= (vj),i=1, ..., n.
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Now, let V be the position vector extending from the origin of K to a particular point P, and V*
be the position vector extending from the origin of K* to that same point. Assume that the
origins of K and K* do not coincide; then V # V*. The position vector is very definitely
coordinate dependent and is not a tensor because it does not satisfy the condition of coordinate
independence.’

But suppose that V; and V, were position vectors of points P; and P; in K, and that V;* and V,*
were position vectors to the same points P; and P, in K*. The vector extending from P; to P,
must be the same vector in both systems. This vector is V, — V1 in K and V,* — V;* in K*. Thus
we have

V- Vi=Vy* - V¥

i.e., while the position vector itself is not a tensor, the difference between any two position
vectors is a tensor of rank 1! Similarly, for any position vectors V and V*, dV = dV*; i.e., the
differential of the position vector is a tensor of rank 1.

This result may seem a little strange, but it provides strong motivation for exercising care in
working with physical vector quantities.

A Digression:
Coordinate Systems and Mathematical Spaces

Now, for one brief chapter, we are going to sidestep the main theme of this article to consider a
subject that is extremely important but all too often ignored. Students who study such disciplines
as General Relativity should especially appreciate the ideas introduced here.

So far, except for a few brief allusions, we have tacitly assumed that we were operating in the
same Euclidean space as we encountered in our high school and college mathematics and physics
without so much as a second thought as to what we were doing or why. In fact, the choice of a
mathematical space — whether Euclidean or non-Euclidean — is every bit as important as the
choice of a properly suited reference system from which to model physical events. In many
cases, confusion exists in the minds of students, often spurred on by popular literature, regarding
the distinction between coordinate systems per se and space. Since we are considering
physical/tensorial quantities that exist in space and are coordinate independent, it behooves us to
take a closer look at this distinction.

A line is an example of a Euclidean 1-space. It has one dimension, extends to + e, and has a
metric (e.g.: the unit interval). The coordinate system associated with the line is defined by the
unit interval, chosen for convenience then copied repeatedly, end-to-end along the entire line in
both directions from the starting point. A line thus marked, with numbers added for reference, is
called a real number line.

2 This argument depends on the definition of the position vector as the vector extending from the origin of
a given coordinate system to a point that it is said to locate. Thus, for any point P in space, the position
vectors in two systems K and K* whose origins do not coincide will, by definition, be different. If V is the
position vector in K, then it is also a vector in K* but not a position vector, and the coordinate
transformations apply to it in the usual way. Since, however, V is a position vector only in one system, not
in both, it cannot represent the same thing in both; hence, it is fundamentally different than other vector
quantities whose character is the same in all reference frames.
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A plane is an example of a Euclidean 2-space. It has two dimensions, extends to infinity in all
directions, and has a linear metric (the unit interval) and an areal metric (the unit square). It also
has an intrinsic geometry defined by the Greek, Euclid (c. 300 BC).

In the geometry of Euclid, objects, such as triangles, squares, or circles, can be moved about in
the plane without deformation and, therefore, compared to one another using such relationships
as similarity or congruence. Also in the geometry of Euclid, parallel lines extend forever without
meeting, and so on. In the plane, the coordinate system of choice is the Cartesian system,
comprising two real number lines that meet at right angles. Other systems are also possible.

The physical analogue of such a space is a region in which material objects and/or beams of light
can be moved about without deformation. But since gravity permeates all space and time, no
such region exists in the universe at large. Thus it was that Einstein abandoned Euclidean space
as a basis for his General Relativity and adopted a differentially metric non-Euclidean space
instead.

A sphere is an example of an elliptic 2-space. Like the plane, the sphere also has two
dimensions. Unlike the plane, however, the sphere does not extend to infinity; it fact, the sphere
is a closed, finite surface. The sphere has a differential linear metric and a differential areal
metric. It also has a geometry, though one quite different from that of Euclid.

A differential metric is used wherever a unit metric is intractable. A unit metric on a sphere
would have to be curved to fit into the surface. Such a metric, of course, could be defined; but
many theorists prefer to use differential quantities that, in the limit of ‘smallness,” behave as
though they were Euclidean. One reason is that a simple algebraic metric can be written for
differential quantities.

In the plane, the algebraic metric is Pythagoras’ theorem: s* = x* + y%, describing the relationship
between the length of the hypotenuse, s, and the two sides, x and y, of a right triangle. Since the
plane is flat, differential quantities are not a concern.

In a sphere, the corresponding relationship would have additional terms: s* = ox* + By2 + VXy.
Such a metric is certainly approachable, but in the limit of smallness, Pytha