Complete References

Partial data references are given with the coefficient data, usually depicted by the author's last name and year of publication. An exception is for the TRC (Thermodynamic Research Center) looseleaf tables, where the table code and dates are given. Complete references are given here:

Adams, G.F., and Page, M.J., 1989, Structures and Energies for Small Borane Compounds: One and Two Boron Compounds. BRL–TR–3027, Ballistic Research Lab, Aberdeen Proving Ground, MD.

Alcock, C.B., Chase, M.W., and Itkin, V., 1993, Thermodynamic Properties of the Group IIA Elements, J. Phys. Chem. Ref. Data, vol. 22, no. 1, pp. 1–85.

Allendorf, M.D., and Melius, C.F., 1997, Thermochemistry of Molecules in the B–N–Cl–H System: Ab Initio Predictions Using the BAC–MP4 Method, J. Phys. Chem., vol. 101, pp.2670–2680.

Anderson, W.R., 1989, Oscillator Strengths of NH2 and the Heats of Formation of NH and NH2, J. Phys. Chem., vol. 93, pp.530–536.

Audi, G., and Wapstra, A.H., 1995, The Update to the Atomic Mass Evaluation. Nuclear Physics A, vol. 595, pp. 409–480.

Barin, I., and Knacke, O., 1973, Thermochemical Properties of Inorganic Substances, vol. I, Springer-Verlag, New York.

Barin, I., 1989, Thermochemical Data of Pure Substances, pts. I and II, VCH Publishers, Weinheim, Germany.

Bauschlicher, Jr., C.W., Langhoff, S.R., and Taylor, P.R., 1990, On the Dissociation Energy of BH, J. Chem. Phys., vol. 93, no. 1, pp. 502–506.

Beaudet, R.A., 1988, Molecular Structures of Boranes and Carboranes. Advances in Boron and the Boranes, VCH Publishers Inc., pp. 417–490.

Blaise, J., and Radziemski, Jr., L.J., 1976, Energy Levels of Neutral Atomic Uranium (UI), J. Opt. Soc. Am., vol. 66, no. 7, pp.644–659.

Blankenship, F.A., and Belford, R.L., 1962, VCl4 Vapor Spectrum and Jahn-Teller Splitting, J. Chem. Phys., vol. 36, no. 3, pp. 633–639.

Brix, P., and Herzberg, G., 1954, Fine Structure of the Schumann-Runge Bands Near the Convergence Limit and the Dissociation Energy of the Oxygen Molecule, Can. J. Phys., vol. 32, pp. 110–135.

Brouwer, L.D., Müller-Markgraf, W., and Troe, J., 1988, Thermal Decomposition of Toluene: A Comparison of Thermal and Laser-Photochemical Activation Experiments, J. Phys. Chem., vol. 92, no. 17, pp. 4905–4914.

Brown, K.W., et al., 1989, Structure of Dicyanoacetylene by Electron Diffraction and Coherent Rotational Raman Spectroscopy, J. Phys. Chem., vol. 93, pp. 5679–5684.

Bunker, P.R., and Jensen, P., 1983, A Refined Potential Surface for the X3B1 Electronic State of Methylene CH2, J. Chem. Phys., vol. 79, no. 3, pp. 1224–1228.

Burcat, A., Zeleznik, F.J., and McBride, B.J., 1985, Ideal Gas Thermodynamic Properties for the Phenyl, Phenoxy, and o-Biphenyl Radicals, NASA TM–83800.

Burcat, A., 2001, Third Millennium Ideal Gas and Condensed Phase Thermochemical Database for Combustion. Technion-Israel Institute of Technology, TAE 867.

Butcher, R.J., and Jones, W.J., 1973a, The Raman Spectrum of Allene, J. Raman Spectrosc, vol. 1, no. 5, pp. 393–414.

Butcher, R.J., and Jones, W.J., 1973b, Cyclopropane: Studies of Some Vibration-Rotation Raman Bands, J. Mol. Spect., vol. 47, pp. 64–83.

Chao, J., Wilhoit, R.C., and Zwolinski, B.J., 1973, Ideal Gas Thermodynamic Properties of Ethane and Propane, J. Phys. Chem. Ref. Data, vol. 2, no. 2, pp. 427–437.

Chao, J., and Zwolinski, B.J., 1975, Ideal Gas Thermodynamic Properties of Ethylene and Propylene, J. Phys. Chem. Ref. Data, vol. 4, no. 1, pp. 251–261.

Chao, J., and Zwolinski, B.J., 1976, Ideal Gas Thermodynamic Properties of Propanone and 2-Butanone, J. Phys. Chem. Ref. Data, vol. 5, no. 2, pp. 319–328.

Chao, J., and Zwolinski, B.J., 1978, Ideal Gas Thermodynamic Properties of Methanoic and Ethanoic Acids, J. Phys. Chem. Ref. Data, vol. 7, no. 1, pp. 363–377.

Chao, J., et al., 1986, Thermodynamic Properties of Key Organic Oxygen Compounds in the Carbon Range C1 to C4, Part 2, Ideal Gas Properties, J. Phys. Chem. Ref. Data, vol. 15, no. 4, pp. 1369–1436.

Chase, M.W.,1996a, NIST–JANAF Thermochemical Tables for the Bromine Oxides, J. Phys. Chem. Ref. Data, vol. 25, no. 4, pp. 1069–1111.

Chase, M.W., 1996b, NIST–JANAF Thermochemical Tables for Oxygen Fluorides, J. Phys. Chem. Ref. Data, vol. 25, no. 2, pp. 551–603.

Chase, Jr., M.W., 1998, NIST–JANAF Thermochemical Tables, Fourth Ed., J. Phys. Chem. Ref. Data, Monograph 9, Parts I and II.

Chen, S.S., Wilhoit, R.C., and Zwolinski, B.J., 1975, Ideal Gas Thermodynamic Properties and Isomerization of n-Butane and Isobutane, J. Phys. Chem. Ref. Data, vol. 4, no. 4, pp. 859–869.

Chen, S.S., Wilhoit, R.C., and Zwolinski, B.J., 1977, Thermodynamic Properties of Normal and Deuterated Methanols, J. Phys. Chem. Ref. Data., vol. 6, no. 1, pp. 105–112.

Chen, S.S., Kudchadker, S.A., and Wilhoit, R.C., 1979, Thermodynamic Properties of Normal and Deuterated Naphthalenes, J. Phys. Chem. Ref. Data, vol. 8, no. 2, pp. 527–535.

Chen, Y., et al., 1989, High Resolution Spectroscopic Detection of Acetylene––Vinylidene Isomerization by Spectral Cross Correlation, J. Chem. Phys., vol. 91, no. 7, pp. 3976–3987.

Chen, Y., Rauk, A., and Tschuikow-Roux, E., 1990, Structures, Barriers for Rotation and Inversion, Vibrational Frequencies, and Thermodynamic Functions of Ethyl, α-fluoroethyl, and α,α-difluoroethyl Radicals: An ab Initio Study, J. Chem. Phys. vol. 93, no. 2, pp. 1187–1195.

Cohen, E.R., and Taylor, B.N., 1987, The 1986 CODATA Recommended Values of the Fundamental Physical Constants, J. Res. Nat. Bur. Stds., vol. 92, no. 2, pp. 85–95.

Continetti, R.E., Balko, B.A., and Lee, Y.T., 1991, Photodissociation of H2S and the HS Radical at 193.3 nm, Chem. Phys. Letters., vol. 182, no. 5, pp. 400–405.

Coplen, T.B., 1996, Atomic Weights of the Elements 1995, Pure Appl. Chem., vol. 68, no. 12, pp. 2339–2359.

Cox, J.D., 1982, Notation for States and Processes, Significance of the Word Standard in Chemical Thermodynamics, and Remarks on Commonly Tabulated Forms of Thermodynamic Functions, Pure Appl. Chem., vol. 54, no. 6, pp. 1239–1250.

Cox, J.D., Wagman, D.D., and Medvedev, V.A., 1989, CODATA Key Values for Thermodynamics, Hemisphere Publishing Corp., New York.

Creighton, J.A., Green, J.H.S., and Kynaston, W., 1966, The Far-Infrared Spectra and Thermodynamic Properties of Vanadium and Titanium Tetrachlorides, J. Chem. Soc. (A), pp. 208–210.

Curtiss, L.A., and Pople, J.A., 1989a, Theoretical Study of B2H3+, B2H2+, and B2H+, J. Chem. Phys., vol. 91, no. 8, pp. 4809–4812.

Curtiss, L.A., and Pople, J.A., 1989b, Theoretical Study of B2H4+ and B2H4, J. Chem. Phys., vol. 90, no. 8, pp. 4314–4319.

Dain, C.J., et al., 1981, The Molecular Structure of Tetraborane (10) in the Gas Phase as Determined by a Joint Analysis of Electron–Diffraction and Microwave Data, J. Chem. Soc., Dalton Transactions, pp. 472–477.

Desai, P.D., 1987, Thermodynamic Properties of Manganese and Molybdenum, J. Phys. Chem. Ref. Data, vol. 16, no. 1, pp. 91–108.

Dorofeeva, O.V., Gurvich, L.V., and Jorish, V.S., 1986, Thermodynamic Properties of Twenty-one Monocyclic Hydrocarbons, J. Phys. Chem. Ref. Data, vol. 15, no. 2, pp. 437–464.

Dorofeeva, O.V., and Gurvich, L.V., 1991, Thermodynamic Properties of Linear Carbon Chain Molecules With Conjugated Triple Bonds, Thermochimica Acta, vol. 178, pp. 273–286.

Dorofeeva, O., et al., 2001, NIST–JANAF Thermochemical Tables. I. Ten Organic Molecules Related to Atmospheric Chemistry, J. Phys. Chem. Ref. Data, vol. 30, no. 2, pp. 475–513.

Douglas, A.E., and Møller, C.K., 1955, The Predissociations of the C12 O and C13 O Molecules. Can. J. Phys., vol. 33, no. 3, pp. 125–132.

Dubois, I., 1968, The Absorption Spectrum of the Free SiH2 Radical, Can. J. Phys., vol. 46, pp. 2485–2490.

Duncan, J.L., 1985, Ground State Rotational Parameters and Fundamental Vibration Frequencies for Isotopically Substituted Diboranes, J. Mol. Spect., vol. 113, pp. 63–76.

Duncan, J.L., et al., 1987, A Combined Empirical—Ab Initio Determination of the General Harmonic Force Field of Ketene, J. Mol. Spect., vol. 125, pp. 196–213.

East, A.L.L., and Allen, W.D., 1993, The Heat of Formation of NCO, J. Chem. Phys., vol. 99, no. 6, pp. 4638–4650.

Ervin, K.M., et al., 1990, Bond Strengths of Ethylene and Acetylene. J. Am. Chem. Soc., vol. 112, pp. 5750–5759.

Faith, L.E., Ackerman, G.H., and Henderson, H.T., 1971, Heat Sink Capability of Jet A Fuel: Heat Transfer and Coking Studies, Shell Development Co., S–14115, NASA CR–72951.

Fegley, Jr. M.B., 1981, The Thermodynamic Properties of Silicon Oxynitride, Comm. Amer. Cer. Soc., pp. C124–C126.

Frankiss, S.G., 1974, Thermodynamic Properties of Organic Oxygen Compounds, Part 34—Chemical Thermodynamic Properties of Propanal, J. Chem. Soc. Faraday Trans. II, vol. 70, pp. 1516–1521.

Fredin, L., et al., 1985, Matrix Isolation Studies of the Reactions of Silicon Atoms With Molecular Hydrogen. The Infrared Spectrum of Silylene, J. Chem. Phys., vol. 82, no. 8, pp. 3542–3545.

Gibson, S.T., Greene, J.P., and Berkowitz, J., 1985, Photoionization of the Amidogen Radical, J. Chem. Phys., vol. 83, no. 9, pp. 4319–4328.

Gordon, S., and McBride, B.J., 1971, Computer Program for Calculation of Complex Chemical Equilibrium Compositions, Rocket Performance, Incident and Reflected Shocks, and Chapman-Jouguet Detonations, NASA SP–273.

Gordon, S., and McBride, B.J., 1976, Computer Program for Calculation of Complex Chemical Equilibrium Compositions, Rocket Performance, Incident and Reflected Shocks, and Chapman-Jouguet Detonations, NASA SP–273, Interim Revision.

Gordon, S., 1982, Thermodynamic and Transport Combustion Properties of Hydrocarbons With Air. Part I—Properties in SI Units, NASA TP–1906.

Gordon, S., McBride, B.J., and Zeleznik, F.J., 1984, Computer Program for Calculation of Complex Chemical Equilibrium Compositions and Applications. Supplement I: Transport Properties, NASA TM–86885.

Gordon, S., and McBride, B.J., 1988, Finite Area Combustor Theoretical Rocket Performance, NASA TM–100785.

Gordon, S., and McBride, B.J., 1994, Computer Program for Calculation of Complex Chemical Equilibrium Compositions and Applications, Part I: Analysis, NASA RP–1311.

Gordon, S., and McBride, B.J., 1999, Thermodynamic Data to 20 000 K for Monatomic Gases, NASA/TP—1999-208523.
This page contains an Adobe® Acrobat® Reader PDF file. You need Acrobat® Reader for viewing the file. You can download it free by clinking this link:
click

Gracia-Salcedo, C.M., Brabbs, T.A., and McBride, B.J., 1988, Experimental Verification of the Thermodynamic Properties for a Jet-A Fuel, NASA TM–101475.

Gurvich, L.V., et al., 1978, Thermodynamic Properties of Individual Substances, vol. 1, parts 1 and 2, Nauka, Moscow.

Gurvich, L.V., et al., 1979, Thermodynamic Properties of Individual Substances, vol. 2, parts 1 and 2, Nauka, Moscow.

Gurvich, L.V., et al., 1982, Thermodynamic Properties of Individual Substances, vol. 4, parts 1 and 2, Nauka, Moscow.

Gurvich, L.V., Veyts, I.V., and Alcock, C.B., 1989, Thermodynamic Properties of Individual Substances, vol. 1, parts 1 and 2, Hemisphere Publishing Corp., New York.

Gurvich, L.V., Veyts, I.V., and Alcock, C.B., 1991, Thermodynamic Properties of Individual Substances, vol. 2, Hemisphere Publishing Corp., New York.

Gurvich, L.V., Veyts, I.V., and Alcock, C.B., 1996a, Thermodynamic Properties of Individual Substances, vol. 3, Begell House, New York.

Gurvich, L.V., et al., 1996b, Thermodynamic Properties of Alkali Metal Hydroxides. Part I.—Lithium and Sodium Hydroxides, J. Phys. Chem. Ref. Data, vol. 25, no. 4, pp. 1211–1276.

Gurvich, L.V., et al., 1997, Thermodynamic Properties of Alkali Metal Hydroxides. Part II.—Potassium, Rubidium, and Cesium Hydroxides, J. Phys. Chem. Ref. Data, vol. 26, no. 4, pp. 1031–1110.

Hackett, P.A., et al., 1986, The First Ionization Potential of Zirconium Atoms Determinedby Two Laser, Field-Ionization Spectroscopy of High Lying Rydberg Series, J. Chem. Phys., vol. 85, no. 6, pp. 3194–3197.

Haar, L. 1968, Thermodynamic Properties of Ammonia as an Ideal Gas, J. Res. Nat. Bur. Stds., Section A.—Physics and Chemistry, vol. 72A, no. 2, pp. 207–216.

Haar, L., Gallager, J.S., and Kell, G.S., 1984, NBS/NRC Steam Tables, Hemisphere Publishing Corporation, Washington.

Herzberg, G., 1970, The Dissociation Energy of the Hydrogen Molecule, J. Mol. Spect., vol. 33, no. 1, pp. 147–168.

Hills, A.J., and Howard, C.J., 1984, Rate Coefficient Temperature Dependence and Branching Ratio for the OH + ClO Reaction, J. Chem. Phys., vol. 81, no. 10, pp. 4458–4465.

Hippler, H., and Troe, J., 1990, Thermodynamic Properties of Benzyl Radicals: Enthalpy of Formation from Toluene, Benzyl Iodide, and Dibenzyl Dissociation Equilibria, J. Phys. Chem., vol. 94, no. 9, pp. 3803–3806.

Hitchcock, A.P., and Laposa, J.D., 1975, Vibrational Frequencies of Toluene-d5, J. Mol. Spect., vol. 54, no. 2, pp. 223–230.

Hotop, H., and Lineberger, W.C., 1985, Binding Energies in Atomic Negative Ions: II., J. Phys. Chem. Ref. Data, vol. 14, no. 3, pp. 731–750.

Huang, Y., Barts, S.A., Halpern, J.B., 1992, Heat of Formation of the CN Radical, J. Phys. Chem., vol. 96, pp. 425–428.

Hübner, H., et al., 1997, Microwave Spectra, Dipole Moments, and Torsional Potential Function of cis-Glyoxal and cis-Glyoxal-d1, J. Mol. Spect., vol. 184, pp. 221–236.

Hudgens, J.W., et al., 1991, Kinetics of the Reaction of CCl3 + Br2 and Thermochemistry of CCl3 Radical and Cation, J. Phys. Chem., vol. 95, pp. 4400–4405.

Hultgren, R., et al., 1973, Selected Values of the Thermodynamic Properties of the Elements, American Society for Metals, Metals Park, OH.

Jacox, M.E., 1994, Vibrational and Electronic Energy Levels of Polyatomic Transient Molecules, J. Phys. Chem. Ref. Data, Monograph 3.

Jacox, M.E., 1998, Vibrational and Electronic Energy Levels of Polyatomic Transient Molecules. Supplement A, J. Phys. Chem. Ref. Data, vol. 27, no. 2, pp. 115–393.

Johansson, I., and Litzen, U., 1967, The Term Systems of the Neutral Gallium and Indium Atoms Derived From New Measurements in the Infrared Region, Arkiv. for Fysik, vol. 34, no. 46, pp. 573–587.

Johnson, G.K., 1986, The Standard Molar Enthalpy of Formation of SiF4(g) at 298.15 K by Fluorine Bomb Calorimetry, J. Chem. Thermodynamics, vol. 18, pp. 801–802.

Johnson III, R.D., and Hudgens, J.W., 1996, Structural and Thermochemical Properties of Hydroxymethyl (CH2OH) Radicals and Cations Derived from Observations of EQUATION TILDE OVER B SUPERSCRIPT 2 A PRIME 
PARENTHESIS 3P PARENTHESIS LEFT ARROW TILDE OVER X SUPERSCRIPT 2 A 
DOUBLE PRIMEElectronic Spectra and from Ab Initio Calculations, J. Phys. Chem., vol. 100, no. 51, pp. 19874–19890.

Kanamori, H., and Hirota, E., 1988, Vibronic Bands of the CCH Radical Observed by Infrared Diode Laser Kinetic Spectroscopy, J. Chem. Phys., vol. 89, no. 7, pp. 3962–3969.

Kaufman, V., and Martin, W.C., 1991a, Wavelengths and Energy Level Classifications of Magnesium Spectra for All Stages of Ionization (Mg I Through Mg XII), J. Phys. Chem. Ref. Data, vol. 20, no. 1, pp. 83–152.

Kaufman, V., and Martin, W.C., 1991b, Wavelengths and Energy Level Classifications for the Spectra of Aluminum (Al I Through Al XIII), J. Phys. Chem. Ref. Data, vol. 20, no. 5, pp. 775–858.

Keenan, J.H., et al., 1984, Steam Tables, Thermodynamic Properties of Water Including Vapor, Liquid and Solid Phases, John Wiley & Sons, Inc., New York.

Khanna, R.K., Perera-Jarmer, M.A., and Ospina, M.J., 1987, Vibrational Infrared and Raman Spectra of Dicyanoacetylene, Spectrochimica Acta, Part A—Molecular and Biomolecular Spectroscopy, vol. 43, no. 3, pp. 421–425.

King, E.G., Mah, A.D., and Pankratz, L.B., 1973, Thermodynamic Properties of Copper and Its Inorganic Compounds, INCRA Series on the Metallurgy of Copper, Monograph II, International Copper Research Association, Inc., New York.

Knippers, W., et al., 1985, Raman Overtone Spectroscopy of Ethylene, Chem. Phys., vol. 98, pp. 1–6.

Koga, Y., et al., 1984, Infrared Intensities of Acetonitrile, J. Phys. Chem., vol. 88, no. 14, pp. 3152–3157.

Kolbuszewski, M., et al., 1996, An Ab Initio Calculation of the Rovibronic Energies of the BH2 Molecule, Mol. Phys., vol. 88, no. 1, pp. 105–124.

Kramida, A., and Martin, W.C., 1997, A Compilation of Energy Levels and Wavelengths for the Spectrum of Neutral Beryllium (Be I), J. Phys. Chem. Ref. Data, vol. 26, no. 5, pp. 1185–1194.

Kudchadker, S.A., and Kudchadker, A.P., 1975, Ideal Gas Thermodynamic Properties of the Eight Bromo- and Iodomethanes, J. Phys. Chem. Ref. Data, vol. 4, no. 2, pp. 457–470.

Kudchadker, S.A., and Kudchadker, A.P., 1976, Erratum: Ideal Gas Thermodynamic Properties of Eight Bromo- and Iodomethanes, J. Phys. Chem. Ref. Data, vol. 5, no. 2, pp. 529–530.

Kudchadker, S.A., et al., 1978, Ideal Gas Thermodynamic Properties of Phenol and Cresols, J. Phys. Chem. Ref. Data, vol. 7, no. 2, pp. 417–423.

Kumaran, S.S., et al., 1997, Experiments and Theory on the Thermal Decomposition of CHCl3 and the Reactions of CCl2, J. Phys. Chem. A, vol. 101, no. 46, pp. 8653–8661.

Lewis, J.D., et al., 1972, Periodic Potential Functions for Pseudorotation and Internal Rotation, J. Mol. Structure, vol. 12, pp. 427–449.

Litzen, U., Brault, J.W., and Thorne, A.P., 1993, Spectrum and Term System of Neutral Nickel, Ni I, Phys. Scripta, vol. 47, no. 5, pp. 628–673.

Lyman, J.L., and Noda, T., 2001, Thermochemical Properties of Si2F6 and SiF4 in Gas and Condensed Phases, J. Phys. Chem. Ref. Data, vol. 30, no. 1, pp. 165–186.

Mach, P., Hubac, I., and Mavridis, A., 1994, Ab Initio Structural Study of the B4H4 Molecule. Asymmetric Structure for a ‘Symmetric’ System, Chem. Phys. Letters, vol. 226, pp. 469–474.

Manion, Jeffrey A., 2002, Evaluated Enthalpies of Formation of the Stable Closed Shell C1 and C2 Chlorinated Hydrocarbons, J. Phys. Chem. Ref. Data, vol. 31, no. 1, pp. 123–172.

Martin, J.M.L., and Lee, T.J., 1992, Accurate Ab Initio Quartic Force Fields for Borane and BeH2, Chem. Phys. Letters, vol. 200, no. 5, pp. 502–510.

Martin, J.M.L, 1997, Benchmark Ab Initio Calculations of the Total Atomization Energies of the First-Row Hydrides AHn (A=Li–F), Chem. Phys. Letters, vol. 273, pp. 98–106.

Martin, J.M.L., and Taylor, P.R., 1998, Revised Heat of Formation of Gaseous Boron: Basis Set Limit Ab Initio Binding Energies of BF3 and BF, J. Phys. Chem. A, vol. 102, no. 18, pp. 2995–2998.

Martin, W.C., and Zalubas, R., 1981, Energy Levels of Sodium, Na I Through Na XI, J. Phys. Chem. Ref. Data, vol. 10, no. 1, pp. 153–195.

Martin, W.C., and Zalubas, R., 1983, Energy Levels of Silicon, Si I Through Si XIV, J. Phys. Chem. Ref. Data, vol. 12, no. 2, pp. 323–380.

Martin, W.C., Zalubas, R., and Musgrove, A., 1985, Energy Levels of Phosphorus, P I Through P XV, J. Phys. Chem. Ref. Data, vol. 14, no. 3, pp. 751–802.

Martin, W.C., Zalubas, R., and Musgrove A., 1990, Energy Levels of Sulfur, S I Through S XVI, J. Phys. Chem. Ref. Data, vol. 19, no. 4, pp. 821–880.

Martin, W.C., Kaufman, V., and Musgrove A., 1993, A Compilation of Energy Levels and Wavelengths for the Spectrum of Singly-Ionized Oxygen (O II), J. Phys. Chem. Ref. Data, vol. 22, no. 5, pp. 1179–1212.

Martin, W.C., 1997, Private communication.

McBride, B.J., and Gordon, S., 1992, Computer Program for Calculating and Fitting Thermodynamic Functions, NASA RP–1271.

McBride, B.J., Gordon, S., and Reno, M.A., 1993a, Thermodynamic Data for Fifty Reference Elements, NASA TP–3287.

McBride, B.J., Gordon, S., and Reno, M.A., 1993b, Coefficients for Calculating Thermodynamic and Transport Properties of Individual Species, NASA TM–4513.

McBride, B.J, Reno, M.A., and Gordon, S., 1994, CET93 and CETPC: An Interim Updated Version of the NASA Lewis Computer Program for Calculating Complex Chemical Equilibria With Applications, NASA TM–4557.

McBride, B.J., and Gordon, S., 1996, Computer Program for Calculation of Complex Chemical Equilibrium Compositions and Applications, II: Users Manual and Program Description, NASA RP–1311.

McDowell, R.S., et al., 1982, Infrared Spectrum and Potential Constants of Silicon Tetrafluoride, J. Chem. Phys., vol. 77, no. 9, pp. 4337–4343.

McKee, M.L., 1990, Estimation of Heats of Formation of Boron Hydrides from Ab Initio Energies, J. Phys. Chem., vol. 94, no. 1, pp. 435–440.

Mehta, G., et al., 1995, Comparative Testing of Russian Kerosene and RP–1, AIAA 95–2962.

Messer, C.E., and Ziegler, W.T., 1941, Rotation of Groups in Ionic Lattices. The Heat Capacities of Sodium and Potassium Cyanides, J. Am. Chem. Soc. vol. 63, pp. 2703–2708.

Miller, R.E., Leroi, G.E., and Eggers, Jr., D.F., 1967, Infrared Spectrum of Deuterium Sulfide, J. Chem. Phys., vol. 46, no. 6, pp. 2292–2297.

Moore, C.B., and Pimentel, G.C., 1963, Infrared Spectrum and Vibrational Potential Function of Ketene and the Deuterated Ketenes, J. Chem. Phys., vol. 38, no. 12, pp. 2816–2829.

Moore, C.E., 1970a, Ionization Potentials and Ionization Limits Derived From the Analyses of Optical Spectra, NSRDS–NBS 34.

Moore, C.E., 1970b, Selected Tables of Atomic Spectra, A.—Atomic Energy Levels—2nd ed., and B.—Multiplet Tables, C I, C II, C III, C IV, C V, C VI, NSRDS–NBS 3, sect. 3.

Moore, C.E., 1971, Atomic Energy Levels (As Derived From the Analysis of Optical Spectra) NSRDS–NBS 35, Vol. 1.

Moore, C.E., 1972, Selected Tables of Atomic Spectra, A.—Atomic Energy Levels—2nd ed., and B.—Multiplet Tables H I, D, T, NSRDS–NBS 3, sect. 6.

Moore, C.E., 1975, Selected Tables of Atomic Spectra, Atomic Energy Levels, and Multiplet Tables N I, N II, and N III, NSRDS–NBS 3, sect. 5.

Moore, C.E., 1976, Selected Tables of Atomic Spectra, Atomic Energy Levels, and Multiplet Tables O I, NSRDS–NBS 3, sect. 7.

Nagarajan, G., 1963, Potential Constants and Thermodynamic Functions of the Tetrachlorides of Titanium and Vanadium, Bull. Soc. Chim. Belg., vol. 72, nos. 5–6, pp. 346–350.

Niiranen, J.T., Gutman, D., and Krasnoperov, L.N., 1992, Kinetics and Thermochemistry of the CH3CO Radical: Study of the CH3CO + HBr → CH3CHO + Br Reaction, J. Phys. Chem., vol. 96, pp. 5881–5886.

Nimlos, M.R., Soderquist, J.A., and Ellison, G.B., 1989, Spectroscopy of CH3CO and CH3CO, J. Am. Chem. Soc., vol. 111, no. 20, pp. 7675–7681.

NIST Atomic Spectroscopic Database, Version 1.1, 1997, online data, http://physics.nist.gov/PhysRefData/contents-atomic.html, updated by W.C. Martin 1993, accessed July 25, 1997.

Oakes, J.M., Harding, L.B., and Ellison, G.B., 1985, The Photo-electron Spectroscopy of HO2, J. Chem. Phys., vol. 83, no. 11, pp. 5400–5406.

Odintzova, G.A., and Striganov, A.R., 1979, The Spectrum and Energy Levels of the Neutral Atom of Boron (B I), J. Phys. Chem. Ref. Data, vol. 8, no. 1, pp. 63–67.

Oetting, F.L., 1964, Low-Temperature Heat Capacity and Related Thermodynamic Functions of Propylene Oxide, J. Chem. Phys., vol. 41, no. 1, pp. 149–153.

Osamura., Y., et al., 1981, Vinylidene: A Very Shallow Minimum on the C2H2 Potential Energy Surface. Static and Dynamical Considerations, J. Am. Chem. Soc., vol. 103, no. 8, pp. 1904–1907.

Osborn, D.L., et al., 1997, Photodissociation Spectroscopy and Dynamics of the HCCO Free Radical, J. Chem. Phys., vol. 106, no. 24, pp. 10087–10098.

Pamidimukkala, K.M., Rogers, D., and Skinner, G.B., 1982, Ideal Gas Thermodynamic Properties of CH3, CD3, CD4, C2D2, C2D4, C2D6, C2H6, CH3N2CH3, and CD3N2CD3, J. Phys. Chem. Ref. Data, vol. 11, no. 1, pp. 83–99.

Pankratz, L.B., and Mrazek, R.V., 1983, Thermodynamic Properties of Elements and Oxides, Bur. Mines Bul. 672.

Pankratz, L.B., 1984, Thermodynamic Properties of Halides, Bur. Mines Bul. 674.

Pankratz, L.B., Mah, A.D., and Watson, S.W., 1987, Thermodynamic Properties of Sulfides, Bur. Mines Bul. 689.

Partridge, H., Langhoff, S.R., and Bauschlicher, Jr., C.W., 1986, Ab Initio Calculations on the Positive Ions of the Alkaline-Earth Oxides, Fluorides, and Hydroxides, J. Chem. Phys., vol. 84, no. 8, pp. 4489–4496.

Pavone, F.S., et al., 1990, Tunable FIR Spectroscopy of CH3CN Between 569 GHz and 1.48 THz, J. Mol. Spect., vol. 144, no. 1, pp. 45–50.

Pedley, J.B., and Marshall, E.M., 1983, Thermochemical Data for Gaseous Monoxides, J. Phys. Chem. Ref. Data, vol. 12, no. 4, pp. 967–1031.

Pedley, J.B., Naylor, R.D., and Kirby, S.P., 1986, Thermochemical Data of Organic Compounds, Chapman and Hall, London.

Peric, M., Peyerimhoff, S.D., and Buenker, R.J., 1990, Ab Initio Investigation of the Vibronic Structure of the C2H Spectrum. III. Calculation of Vibronic Energies and Transition Probabilities in the X2 Σ+, A2Π System, Mol. Phys., vol. 71, no. 4, pp. 693–719.

Pliva, J., and Pine, A.S., 1982, The Spectrum of Benzene in the 3-µm Region: The v12 Fundamental Band, J. Mol. Spect., vol. 93, no. 1, pp. 209–236.

Pliva, J., and Johns, J.W.C., 1983, The v13 Fundamental Band of Benzene, Can. J. Phys., vol. 61, pp. 269–277.

Pliva, J., and Johns, J.W.C., 1984, The Perpendicular Band v14 of Benzene Near 10 µm, J. Mol. Spect., vol. 107, no. 2, pp. 318–323.

Prinslow, D.A., and Armentrout, P.B., 1991, Collision-Induced Dissociation of CS2+. Heat of Formation of the CS Radical, J. Chem. Phys., vol. 94, no. 5, pp. 3563–3567.

Rudolph, H.D., et al., 1967, Mikrowellenspektrum Hinderungspotential der Internen Rotation und Dipolmoment des Toluols, Z. Naturforce A, vol. A22, pp. 940–944.

Ruscic, B., Schwarz, M., and Berkowitz, J., 1989a, Structure and Bonding in the B2H5 Radical and Cation, J. Chem. Phys. vol. 91, no. 7, pp. 4183–4188.

Ruscic, B., Schwarz, M., and Berkowitz, J., 1989b, Molecular Structure and Thermal Stability of B2H4 and B2H4+ Species, J. Chem. Phys., vol. 91, no. 8, pp. 4576–4581.

Ruscic, B., Literja, M., Asher, R.L., 1999, Ionization Energy of Methylene Revisited: Improved Values for the Enthalpy of Formation of CH2 and the Bond Dissociation Energy of CH3 Via Simultaneous Solution of the Local Thermochemical Network, J. Phys. Chem. A., vol. 103, pp. 8625–8633.

Ruscic, B., et al., 2002, On the Enthalpy of Formation of Hydroxyl Radical and Gas-Phase Bond Dissociation Energies of Water and Hydroxyl, J. Phys. Chem. A., vol. 106, pp. 2727–2747.

Saxon, R.P., 1993, Theoretical Investigation of the Structure and Energy of the BH4 Radical, J. Phys. Chem., vol. 97, no. 37, pp. 9356–9359.

Schreiner, P.R., Schaefer III, H.F., and von Ragué Schleyer, P., 1994, The Structure and Stability of BH5. Does Correlation Make It a More Stable Molecule? Qualitative Changes at High Levels of Theory, J. Chem. Phys., vol. 101, no. 9, pp. 7625–7632.

Shen, M., Liang, C., and Schaefer III, H.F., 1993, The Tetramer of Borane and Its Heavier Valence-Isoelectronic Analogs: M4H12 With M = B, Al, and Ga, Chem. Phys., vol. 171, pp. 325–345.

Shimanouchi, T., 1972, Tables of Molecular Vibrational Frequencies, Consolidated Volume I, NSRDS–NBS 39.

Shimanouchi, T., 1977, Tables of Molecular Vibrational Frequencies, Consolidated Volume II , J. Phys. Chem. Ref. Data, vol. 6, no. 3, pp. 993–1102.

Shin, S.K., Goddard III, W.A., and Beauchamp, J.L., 1990, Singlet-Triplet Energy Gaps in Chlorine-Substituted Methylenes and Silylenes, J. Phys. Chem. vol. 94, no. 18, pp. 6963–6969.

Smith, N.K., and Good, W.D., 1979, Enthalpies of Combustion of Ramjet Fuels, AIAA J., vol. 17, no. 8, pp. 905–907.

Stanton, J.F., et al., 1989a, Electron Correlation Effects on the Ground-State Structure and Stability of Triborane(9), Inorg. Chem., vol. 28, pp. 109–111.

Stanton, J.F., Lipscomb, W.N., and Bartlett, R.J., 1989b, Early Stages of Diborane Pyrolysis: A Computational Study, J. Am. Chem. Soc., vol. 111, pp. 5165–5173.

Stimson, H.F., 1969, Some Precise Measurements of the Vapor Pressure of Water in the Range From 25 to 100 °C, J. Res. Natl. Bur. Stds., sect. A—Physics and Chemistry, vol. A73, no. 5, pp. 493–498.

Stuve, J.M., et al., 1980, Thermodynamic Properties of Ferric Oxychloride and Low-Temperature Heat Capacity of Ferric Trichloride, Bur. Mines Rept. Invest., no. 8420.

Sugar, J., and Corliss, C., 1985, Atomic Energy Levels of the Iron-Period Elements: Potassium Through Nickel, J. Phys Chem. Ref. Data, vol. 14, supp. 2.

Sugar, J., and Musgrove, A., 1988, Energy Levels of Molybdenum, Mo I Through Mo XLII, J. Phys Chem. Ref. Data, vol. 17, no. 1, pp. 155–239.

Sugar, J., and Musgrove, A., 1990, Energy Levels of Copper, Cu I Through Cu XXIX, J. Phys Chem. Ref. Data, vol. 19, no. 3, pp. 527–616.

Sugar, J., and Musgrove, A., 1991, Energy Levels of Krypton, Kr I Through Kr XXXVI, J. Phys Chem. Ref. Data, vol. 20, no. 5, pp. 859–915.

Sugar, J., and Musgrove, A., 1993, Energy Levels of Germanium, Ge I Through Ge XXXII, J. Phys Chem. Ref. Data, vol. 22, no. 5, pp. 1213–1278.

Sugar, J., and Musgrove, A., 1995, Energy Levels of Zinc, Zn I Through Zn XXX, J. Phys. Chem. Ref. Data, vol. 24, no. 6, pp. 1803–1872.

Svehla, R.A., and McBride, B.J., 1973, FORTRAN IV Computer Program for Calculation of Thermodynamic and Transport Properties of Complex Chemical Systems, NASA TN D–7056.

Swalen, J.D., and Herschbach, D.R., 1957, Internal Barrier of Propylene Oxide from the Microwave Spectrum I., J. Chem. Phys., vol. 27, no. 1, pp. 100–108.

Szalay, P.G., Forgarsi, G. and Nemes, L., 1996, Quantum Chemical Coupled Cluster Study of the Structure and Spectra of the Ground and First Excited States of the Ketenyl Radical, Chem. Phys. Letters, vol. 263, pp. 91–99.

Terentis, A.C., and Kable, S.H., 1996, Near Threshold Dynamics and Dissociation Energy of the Reaction H2CO → HCO + H, Chem. Phys. Letters, vol. 258, pp. 626–632.

Todd, S.S., 1952, Low Temperature Heat Capacities and Entropies at 298.16 °K. of Magnesium Orthotitanate and Magnesium Dititanate, J. Am. Chem. Soc., vol. 74, pp. 4669–4670.

Trachtman, M., et al., 1990, Double H-Bridged and Single H-Bridged Diboryl Radicals, Struct. Chem., vol. 1, nos. 2–3, pp. 171–178.

Trambarulo, R., and Gordy, W., 1950, The Microwave Spectrum and Structure of Methyl Acetylene, J. Chem. Phys., vol. 18, no. 12, pp. 1613–1616.

TRC Thermodynamic Tables, Non-Hydrocarbons and TRC Thermodynamic Tables, Hydrocarbons, Thermodynamics Research Center: Texas A&M University System, College Station, TX. National Institute of Standards and Technology, Boulder, CO, extant 2001 (loose-leaf tables with individual dates).

Tsang, W., 1985, The Stability of Alkyl Radicals, J. Am. Chem. Soc., vol. 107, no. 10, pp. 2872–2880.

Villarreal, J.R., and Laane, J., 1975, Raman Spectra and Internal Rotation of Methylcyclopropane and Its Analogs, J. Chem. Phys., vol. 62, no. 1, pp. 303–304.

Wagman, D.D., et al., 1982, The NBS Tables of Chemical Thermo-dynamic Properties—Selected Values for Inorganic and C1 and C2 Organic Substances in SI Units, J. Phys. Chem. Ref. Data, vol. 11, supp. 2.

Westrum, Jr., E.F., and Grønvold, F., 1969, Magnetite (Fe3O4) Heat Capacity and Thermodynamic Properties From 5 to 350 K, Low-Temperature Transition, J. Chem Thermodynamics, vol. 1, pp. 543–557.

Wiedmann, R.T., et al., 1992, Rotationally Resolved Threshold Photoelectron Spectra of OH and OD, J. Chem. Phys., vol. 97, no. 2, pp. 768–772.

Wilhoit, R.C., 1975, Thermodynamics Research Center Current Data News, vol. 3, no. 2.

Woolley, H.W., 1987, Ideal Gas Thermodynamic Functions for Water, J. Res. Nat. Bur. Stds., vol. 92, no. 1, pp. 35–53.

Yu, C.-L., and Bauer, S.H., 1998, Thermochemistry of the Boranes, J. Phys. Chem. Ref. Data, vol. 27, no. 4, pp. 807–835.

Zehe, M.J., Gordon, S., and McBride, B.J., 2001, CAP: A Computer Code for Generating Tabular Thermodynamic Functions from NASA Lewis Coefficients, NASA/TP—2001-210959. TP-2001-210959-REV1.pdf

Zehe, M.J., and Jaffe, R.L., 2002, Quantum Chemical Calculation of Thermodynamics for Gas Phase Exo-tetrahydro-dicyclopentadiene (JP–10), to be published as a NASA TM, 2002.

Zeleznik, F.J., and Gordon, S., 1961, Simultaneous Least-Squares Approximation of a Function and Its First Integrals With Application to Thermodynamic Data, NASA TN D–767.

Zeleznik, F.J., 2002, Private communication.

CEA Home | NASA Privacy Statement, and Accessibility Certification

Responsible Official / Curator: Dr.Michael J. Zehe