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Introduction
TCGRID (TurbomachineryC-GRID) is a three-dimensionalgrid generationcodefor turbomachineryblades.The code

cangeneratesingleor multiblock grids thatarecompatiblewith variousanalysiscodesincludingSwift andADPAC. Single-
block gridscanbeeitherC-typeor H-type,andcanbefor linearcascadesor annularbladerows.Multi-block gridsmustusea
C-type grid around the blade, and can add an H-grid in the inlet region and O-grids in the hub or tip clearance regions.

A brief descriptionof TCGRIDandanexampleof acompressorgrid aregivenin (1). Examplesof turbinegridsgenerated
with TCGRID canbefoundin (2). Figures1 hereshows a multiblock H-C grid for a transoniccompressorrotor (NASA rotor
37,) andfigure 2 shows an H-grid for a transonicfan (NASA rotor 67.) The figuresareusedto describethe input variables
later.

All geometrymanipulationin TCGRID is doneusingparametriccubicsplines,sothecodecanhandleaxial, mixed,and
centrifugal flow machines.The input bladegeometrycanbe translated,rescaled,andflipped tangentially, andfull controlof
spacingalongthebladesurfaceis provided.Blade-to-bladegridsaregeneratedusinganefficientelliptic solver thatgivescon-
trol of spacingandanglesat thebladeandouterperiodicboundary. Gridsarereclusteredspanwisewith controloverspacingat
the hub, casing, and clearance regions.

TCGRIDis writtencompletelyin Fortranandrunsasaquickbatchjob onunix or Windowscomputers.Codeinput is sup-
pliedasanASCII dataset.Grid parametersarespecifiedusingconvenientnamelistinput.Hubandcasinggeometriesarespec-
ified ascoordinatepairs.Bladeshapesmaybespecifiedin MERIDL format,Crouse-Tweedtdesigncodeformat,or specified
directly by theuserascoordinatetriplets.Someprintedoutputis provided.No graphicaloutputis provided,but grid files can
be readdirectly andplottedusingthepublic domainCFD visualizationcodesPLOT3D andFAST, or thecommercialcodes
FIELDVIEW and TECPOT.

This documentationbriefly describeshow the TCGRID codeworks. Instructionsfor dimensioning,compiling,andrun-
ning TCGRID aregivenfor Silicon Graphics(SGI) workstationsandPC’s.Thenamelistinput variablesandthehub,tip, and
blade input are described in detail. Finally, an outline of the code structure given and the output file format is described.
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Features of TCGRID
• New in Version 300

Code distributed in tarred format that should compile and run directly on unix machines, or a zipped format that should
compile and run directly on Windows PC’s.
Code converted to Fortran 90
Dynamic memory allocation reduces memory requirements and avoids recompiling for most problems
New algorithm for the meridional grid works for complicated axial-radial flow paths
ADPAC compatible grid files
Improved support for H-grids
Note: For inlet H-grids, the dummy grid line at j=1 has been deleted for compatibility with Swift version 300. Thus inlet H-
grids generated with TCGRID v. 300 are incompatible with earlier versions of Swift.

• Applications
Linear cascades
Axial compressors and turbines
Isolated blade rows or multistage machines
Centrifugal impellers and mixed-flow machines without splitters
Radial diffusers
Pumps

• Grid Types
C- or H-grids around blades
C-grid with upstream H-grid
O-grids in hub- and tip-clearance regions
Multistage machines can be modeled by merging C-grids for individual blades using a utility called MULTIX

• Formulation
Blade-to-blade grids generated with a fast elliptic solver (GRAPE)
Spanwise reclustering done using cubic splines
H-grids in inlet regions and O-grids in clearance gaps generated algebraically

• Input
Namelist input of grid parameters
Hub and casing geometries input in (z, r) coordinates
Blade geometries input in general (z, r, θ) coordinates, or MERIDL format (z, r, θ−upper,θ−lower) or (z, r, ∆θ)

• Printed Output
Input parameters
Convergence information for blade-to-blade grids
Spanwise output of inlet, leading edge, trailing edge, and exit coordinates
Index file with grid size information for Swift

• Grid & Debug Output
Grid files are written as binary data in standard PLOT3D format
Intermediate grid files can be output for debug purposes. Debug files include reclustered blade coordinates, the 2-D
throughflow grid, and 2-D blade-to-blade grids which may be useful for other purposes.

• Computer Requirements
Runs as a quick batch process on most unix, linux, or Windows computers
Fortran 90 compatible compiler

• Graphical Output
No graphical output is provided with TCGRID, but access to some CFD visualization package is absolutely necessary to
view and evaluate new grids. Grid files are in standard PLOT3D format and can be read directly and plotted with public-
domain CFD visualization tools PLOT3D and FAST, or the commercial tools EnSight, FIELDVIEW, or TecPlot. Check the
following web sites for more information.

PLOT3D & FAST: http://www.nas.nasa.gov/Research/Software/swdescription.html
TecPlot: http://www.amtec.com/
FIELDVIEW: http://www.ilight.com/
EnSight: http://www.mscsoftware.com.au/products/software/cei/ensight/
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Getting Started – Unix

Unpacking
For unix systems TCGRID is supplied as a gzipped tar file called tcgrid.tgz. To open:

gunzip tcgrid.tgz
tar -xvf tcgrid.tar

This will create a directory called tcgrid.300 with subdirectories for the source, documentation, and test cases.

Compiling
Tcgrid mustbecompiledwith a Fortran90 compatiblecompiler. Edit modules.f90andchangethemaximumarraysizeif

desired(seeParameter Statement below.) Edit Makefileandchangethecompilername(f90) andoptions(OPTS)asnecessary
for your compiler.

cd tcgrid.300/src; make
The executable file tcgrid remains in the src directory.

Important Note: Modules.f90containsseveral Fortran90 modulesthat areusedwithin otherroutines.It mustbe compiled
beforeany otherroutinesarecompiled.TheMakefile shouldtake careof this automatically. If you ever needto compileman-
ually, be sure to compile modules.f90 first. To delete the object files and executable,

make clean

Parameter Statement
TCGRIDusesdynamicmemoryallocationfor mostarraysto avoid redimensioningfor mostproblems.However, for pro-

gramming convenience the maximum size of many work arrays are set using a Fortran module defined in modules.f90.

module param
!  maximum dimensions of any grid, used for work arrays
   integer,parameter::ni=321, nj=63, nk=65, nb=2*ni
end module param

This grid size (321 x 63 x 65) is large enough for most problems but can be increased to any size as needed.

Running TCGRID
To run the Goldman turbine vane test case:

cd tcgrid.300/gold
../src/tcgrid < gold.int

The grid should run in a few seconds. The output can be redirected to a file if desired.

Output Files
Theoutputgrid file is written to Fortranunit 1 (fort.1). Debug grid files maybewritten to fort.11 - fort.19,dependingon

idbg flagssetin the input file. All grid files arewritten asunformattedbinaryfiles. A Swift index file mayalsobewritten to
fort.10.Theindex file is in ASCII formatandcanbeeditedasdesired.OutputfilesshouldberenamedafterrunningTCGRID,

mv fort.1 gold.xyz
mv fort.10 gold.ind

Alter native
Settingiopen=1 in theinputfile causesall files to beopenedexplicitly with adefault file name.For example,thegrid will

benamedgrid.xyz.Otherfile namesaregivenwith the iopen optionsunder“&nam3 -Algorithm Parameters”on page10.By
usingthedefault file namesyou canavoid thefile renamingsteps,but you maywantto renamethefiles with moredescriptive
names later.

Binary grid files canbe usedimmediatelyby Swift. Grid files canbe readinto PLOT3D using the read /unformatted
option.
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Getting Started – Windows

Unpacking
For Windows, TCGRID is supplied as a zipped file called tcgrid.zip. Use Winzip or PKZIP to unzip it. This will create a

directory called tcgrid.300 with subdirectories for the source, documentation, and test cases.

Compiling
Tcgrid must be compiled with a Fortran 90 compatible compiler. Compaq Visual Fortran works well, but I don’t have

enough experience to give step-by-step instructions. Please let me know if you can adapt my Makefile or have any information
about other compilers. In general, using Developer Studio:

Go to tcgrid.300/src
Open a new Fortran console application
Edit modules.f90 and change the maximum array size if desired (see Parameter Statement below.)
Set compile options for full optimization and no debug tables
Compile modules.f90 first
Build tcgrid

Important Note: Modules.f90 contains several Fortran 90 modules that are used within other routines. It must be compiled
before any other routines are compiled. If you ever need to recompile, be sure to compile modules.f90 first.

Parameter Statement
TCGRID uses dynamic memory allocation for most arrays to avoid redimensioning for most problems. However, for pro-

gramming convenience the maximum size of many work arrays are set using a Fortran module defined in modules.f90.

module param
!  maximum dimensions of any grid, used for work arrays
   integer,parameter::ni=321, nj=63, nk=65, nb=2*ni
end module param

This grid size (321 x 63 x 65) is large enough for most problems but can be increased to any size as needed.

Running TCGRID
To run the Goldman turbine vane test case, open a DOS window (Start/Programs/Accessories/Command prompt)

cd tcgrid.300\gold
Edit the TCGRID input file gold.int and set iopen=1 in namelist 3. This will cause all files to be opened with the default names
given. Now run TCGRID.

..\src/tcgrid < gold.int
The grid should run in a few seconds. The output can be redirected to a file if desired.

Output Files
The output grid file is written to grid.xyz. Debug grid files may be written to dedugnn.xyz, where nn=11-19, depending on

idbg flags set in the input file. All grid files are written as unformatted binary files. A Swift index file may also be written to
index.dat. The index file is in ASCII format and can be edited as desired.

Binary grid files can be used immediately by Swift. Grid files can be read into TecPlot using File/Import/PLOT3D Loader
with the unformatted option.
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TCGRID Input – Ov erview
TCGRID input consists of five blocks of namelist input (&nam1 - &nam5), followed by a title, then ASCII hub, tip, and

blade coordinates. All grids require the title, hub, tip, and blade coordinate input, (see Hub, Tip, and BladeInput, page13).
Many of the namelist variables are initialized in modules.f90. Required input variables that are not initialized are listed below,
followed by some comments regarding optional variables. All variables are described in detail in the section entitled Namelist
Input.

C-grids
To generate the main C-grid around the blade set the following variables:
&nam1 - im, jm, km, merid, itl, icap.

To change clustering along the blade surface, along the span, and upstream and downstream of the blade, use iclus, icluss,
and iclusw, respectively.
Use iclus2d=1 to cluster the meridional grid using the same spanwise clustering as the input blade. For simple, ruled blades
use iclus2d=0.
For complex flow paths increase the meridional grid size using i2d and k2d.

&nam2 - nle, nte, dsle, dste, dswte, dswex, dsmin, dsmax, dshub, dstip.
Vary the leading- and trailing-edge radii with span using dsthr.
Move the location of the leading-edge clustering using dsra.

&nam3 - iterm.
For a quick check of a new grid, set iterm=0. Use PLOT3D to check leading- and trailing-edge spacings, surface cluster-
ings, boundary locations, and outer boundary spacings.
If something goes wrong, use the array idbg(9) to generate debug grids to check input coordinates or intermediate grids
(see “TCGRID Code Description” on page16.)
Use aabb and ccdd to move points towards or away from the blade and outer boundary respectively.

&nam4 - Inlet and exit boundary coordinates zbc and rbc are required.
&nam5 - Most variables can defaulted.

Use zscale, tscale, rscale, ztrans,and tflip to manipulate the input blade coordinates.
Use ioble, exl, and exr to change the outer boundary shape.
Use iwakex and jwakex to stretch the wake grid.

H-grids
Most of the parameters required for C-grids are also required for H-grids. In addition, the following indices must be set:
&nam1 - igch=1, ilh, itl .
&nam2 - Spacing parameters are interpreted as follows:

dsin = spacing at inlet,
dsle = spacing at leading edge,
dste = spacing at trailing edge,
dswex = spacing at exit
dsmax is reset to dsmin internally.

&nam3 - Some algorithm control parameters are reset for consistency.
ccdd is reset to aabb.
omegpqis reset to omegrs.

Linear Cascades
To generate a grid for a linear cascade set the following:
&nam1 - igeom = 1,
&nam2 - gap.

Inlet H-grid
To generate an inlet H-grid, set the following:
&nam1 - igin = 1, imi.
&nam2 - dsin.

Since the inlet H-grid overlaps the blade C-grid, the C-grid must be run to convergence for proper H-grid spacings.
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Tip Clearance O-grid
To generate a tip clearance grid, set the following:
&nam1 - igclt = 1, jmt, kmt.
&nam2 - cltip, dsclt.

The number of points in the i-direction depends on the C-grid size. Since the clearance O-grid overlaps the blade C-grid,
the C-grid must be run to convergence for proper O-grid spacings.

Hub Clearance O-grid
To generate a hub clearance grid, set the following:
&nam1 - igclh = 1, jmh, kmh.
&nam2 - clhub, dsclh.

The number of points in the i-direction depends on the C-grid size. Since the clearance O-grid overlaps the blade C-grid,
the C-grid must be run to convergence for proper O-grid spacings.

Multistage Grids – Grid r equirements
Multistage C-grids are generated one blade row at a time, then are merged using a utility called MULTIX. The individual

grids must meet certain requirements:

1. The blades must be in the correct location and orientation. Use ztrans to move the blades axially, and tflip to flip the θ-
coordinates if necessary.
2. All grids must have identical spanwise spacings. Use identical hub and tip inputs, and identical spanwise stretching and
spacing parameters for all grids.
3. The grids must match at an interface between the blades. Set the exit boundary coordinates of grid 1 to the inlet bound-
ary coordinates of grid 2. Place the interface midway between the blades, or close enough to blade 2 to get a good C-grid.
4. For Swift, the grids must overlap exactly one cell at the interface. On grid 1 set dswex to give a fine spacing near the exit,
and set . This resets the grid spacing at the exit from approximately dswex to exactly dslap. On grid 2 set

. This will cause the dummy grid line from grid 2 to overlap grid 1 by dsmax. (Not necessary for
ADPAC.)
5. The relative circumferential spacing between the grids doesn’t matter.

Multistage Grids – MULTIX Utility
MULTIX simply merges two PLOT3D files and two index files without much checking. The steps are as follows:

1. Run grid 1. Rename the grid file from fort.1 to name1.xyz. Rename the index file from fort.10 to name1.ind.
2. Run grid 2. Rename the grid file from fort.1 to name2.xyz. Rename the index file from fort.10 to name2.ind.
3. Compile multix.f and run it. It will prompt for name1 and name2.
4. The output files are named out.xyz and out.ind. You can rename them and add more files if necessary.
5. The index file out.ind will have the correct format and grid sizes, but you will have to edit it and change connectivity,
boundary condition flags, etc. as described in the Swift documentation.

dslap dswex≈
dsmax2 dslap1=
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Namelist Input
Defaultsaregivenin anglebrackets,<default=value>or <default.>If no default is giventhevalueMUST beinput.Rele-

vant figures are given in parentheses (fig. #.)

&nam1 - Grid Size Parameters
Many grid size parameters are illustrated in figures 1 – 4.

merid Flag for type of bladeinput. SeeHub, Tip, and Blade Input, page13, and figures5 and 6 for complete
descriptions of the blade input formats.

= 0 Blade input in stacked sections, (z, r, θ). Completely general, (fig. 5), <default.>

= 1 Bladeinput in Crouse/Tweedtdesigncodeformat,(z, r, θ) (fig. 5.) Like merid=1 but ordereddifferently.

= 2 Blade input in MERIDL format, (z, r, θ-upper, θ-lower), (fig. 6).

= 3 Blade input in MERIDL format, (z, r, θ, ∆θ)

im Grid size in i- (streamwise) direction, (figs. 1, 2.)

jm Grid size in j- (blade-to-blade) direction, (figs. 1, 2.)

km Grid size in k- (spanwise) direction, (fig. 3.)

itl C-grid: i-index of lower trailing-edge point, (fig. 1.)

H-grid: number of cells downstream of the trailing-edge, (fig.2.)

icap Numberof cellson theinlet partof theC-grid,equally-spaced.Remainingcellsaredistributedover theperi-
odic boundaries. Increaseicap to pull points towards inlet, and vice-versa, (fig. 1.)

igeom Flag that tells whether grid will be for a linear cascade or an annular blade row.

= 0 Annular blade row <default.>

= 1 Linear cascade.

iclus Flag for type of clustering along the blade surfaces.

= 1 Hyperbolic tangent clustering - smoothest, but may be sparse at blade center ifim is small <default.>

= 2 Hermite polynomial clustering- more uniform, but may grow too quickly near leadingand trailing
edges. Good for largeim.

icluss Same asiclus, but for clustering in the spanwise direction.

iclusw Same asiclus, but for streamwise clustering downstream in the wake, and also upstream for an H-grid.

iclus2d Flag that sets spanwise clustering of the meridional grid on which blade-to-blade grids are generated.

= 0 Meridional grid is equally spaced between hub to tip. Good for ruled blades,

= 1 Meridional grid hasapproximatelythe samespanwiseclusteringasthe input bladesections.Usethis
option if the input blade sections resolves spanwise geometry variations, e.g., fillets <default.>

i2d Numberof i- (streamwise)pointson thecoarsemeridionalgrid usedto definethepassage.Typically 21 for
an axial machine, 41 or more for a centrifugal. <default = 21, max=101.>

k2d Numberof k- (spanwise)pointson thecoarsemeridionalgrid usedto definethepassage.Shouldberoughly
equal to the number of input blade sectionsnbs. <default = 11, max=50.>

Parameters for H-grids Around Blades

igch Flag to set C- or H-grids around blade



8

= 0 C-grid <default.>

= 1 H-grid.

ilh H-grid: number of cells upstream of the leading edge, (fig. 2.)

itl H-grid: number of cells downstream of the trailing-edge, (fig.2.)

Parameters for Inlet H-grids

igin Flag to generate inlet H-grid ahead of main C-grid. Not used ifigch = 1.

= 0 No inlet H-grid <default.>

= 1 Generate inlet H-grid.

imi Number of i- (streamwise) points in the inlet H-grid. Only used ifigin = 1.

Parameters for Clearance Gap O-grids

igclt Flag to generate tip clearance O-grid.

= 0 No tip clearance O-grid <default.>

= 1 Generate tip clearance O-grid.

jmt Number of j- (radial) points in the tip clearance grid, (fig. 4.). Only used ifigclt = 1.

kmt Number of k- (spanwise) points in the tip clearance grid, (fig. 4.) Only used ifigclt = 1.

igclh Flag to generate hub clearance O-grid.

= 0 No hub clearance O-grid <default.>

= 1 Generate hub clearance O-grid.

jmh Number of j- (radial) points in the hub clearance grid. Only used ifigclh = 1.

kmh Number of k- (spanwise) points in the hub clearance grid, (fig. 4.) Only used ifigclh = 1.

&nam2 - Grid Spacing Parameters
All spacingparametersmustbeinput in theunitsdesiredfor thefinal grid. All spacingparametersnamed“ds…” referto

spacingalongsomearclength,andnot in a particularcoordinatedirection.Valuessuggestedas“e.g.” shouldgive a goodini-
tial guess but may need to be modified after examining the initial grid.

nle Number of points equally-spaced around the blade leading edge, typically 15.

nte Number of points equally-spaced around the blade trailing edge, typically 10.

dsle Spacing around the leading edge at the hub, e.g. .

dste Spacing around the trailing edge at the hub, e.g. .

dsthr “ds tip-to-hubratio.” Dsle, dste, anddswte aretakenashubvaluesandarevariedlinearly with spanto this
factor at the tip. Allows the leading edge radius, etc. to increase or decrease (usually decrease) with span.
<default = 1.>

dswte Spacing away from the trailing edge on the wake cut of C-grid, should be≈ dste, (fig. 1.)

dswex Spacingat exit on wake cut of C-grid,hardto estimatein advance.Shouldberoughlythespacingalongthe
periodicboundary, which is roughlythestreamwisedistancefrom theinlet to theexit dividedby (im-icap)/
2, (fig. 1.)

π rle nle⁄⋅

π rte nte⁄⋅
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dsmin Spacingawayfrom theblade,e.g.chord/10,000for viscousgrids,(fig. 1, 2.) Note:Swift’sbladesurfaceout-
putgivesy+, thegrid spacingat thewall in turbulentwall units.y+ shouldbe . If it is too largeyou
may need to rerun your grid withdsmin, dshub, anddstip reduced accordingly.

dsmax Spacing away from the periodic boundary, e.g. midspan-pitch/jm, (fig. 1, 2.)

dsin Spacing away from the inlet of inlet H-grid, (fig. 1, 2.) Only used ifigin = 1 origch = 1.

dsra (Pressuresurfacearclength)/(totalsurfacearclength).Usedto locatethecenterof theleadingedgecluster-
ing on theblade.Theclusteringis centeredaboutdsra x (total surfacearclength.)Typical valuesare0.5for
symmetrical blades, about 0.49 for compressor blades, and about 0.45 for highly-cambered turbine blades.
Only used for general blade input,merid = 0.

= 0 TCGRIDassumesthattherearethesamenumberof bladeinputcoordinatesoneachsurfaceandclusters
about the median input point <default.>

gap Bladerow pitch for a linearcascade.Only usedif igeom = 1. If igeom = 0 thepitch is setby nblade. <default
= 1.>

rcorn Radius for the front corner of the C-grid, (fig. 1.) Usually 0., but the inlet may be smootherwith
. <default = 0. Reset to 0. ifigin = 1.>

Spanwise Spacing Parameters

Thespanwisegrid is clusteredin regionsasshown in fig. 4. Thestretchingfunctionin eachregion is setby icluss.
A central region is always used between the hub and casing, with wall spacingsdshub anddstip.
If  a tip clearance region is added, with wall spacingdstip, height =cltip, and interface spacingdsclt.

If  a hub clearance region is added, with wall spacingdshub, height =clhub, and interface spacingdsclh.

Note that theseregionsareindependentof any clearanceregion O-gridsthat areaddedif or . In
other words, these stretching functions can be used to cluster points near the endwalls without adding O-grids.

dstip Spanwise spacing at the tip, e.g. span/10,000 for viscous grid. Should be≈ dshub, (fig. 4.)

cltip Tip clearanceheight,(fig. 4.) Usedif igclt = 1, or to clustertip grid for asimpleperiodicityclearancemodel.

= 0 Grid is stretched continuously away from the casing. <default.>

> 0 Grid is clustered near the casing usingdstip, cltip, anddsclt.

dsclt Spanwise spacing at the blade/tip clearance interface, (fig. 4.) Only used ifcltip > 0. <default =dstip.>

dsclh Spanwise spacing at the blade/hub clearance interface, (fig. 4.) Only used ifclhub > 0. <default =dshub.>

clhub Hub clearance, (fig. 4.) Used ifigclh = 1, or to cluster hub grid for a simple periodicity clearance model.

= 0 Grid is stretched continuously away from the hub <default.>

> 0 Grid is clustered near the hub usingdshub, clhub, anddsclh.

dshub Spanwise spacing at the hub, e.g. span/10,000 for viscous grids, (fig. 4.)

Parameters for Blunt Trailing Edges
TCGRID canwrapgridsaroundbladeswith blunt trailing edgeslike thebladesshown in figure7. Bladecoordinatesmay

be input in one of two ways depending on the value ofmerid.

merid = 0 or 1 (generalcoordinateinput) <default.>Bladesmustbeinput with anopentrailing edge(fig. 7a,)and
nbase points are added automatically.

= 2 or 3 (MERIDL input.) Blades are always input with an open trailing edge (fig. 6,) then

O 1 5–( )

rcorn pitch/8≈

1 3–

cltip 0>
clhub 0>

igclt 1= igclh 1=



10

if nbase = 0 a round trailing edge is added <default.>

if nbase > 0 a blunt trailing edge is assumed.

nbase Number of intervals on the blunt trailing edge (fig. 7a.)

ibase Flag controlling the location of the wake cut line with respect to the base of the blade (fig. 7a.) To minimize
grid distortion, choose ibase such that the cut leaves the corner with the acute angle. If the base is symmetric
(fig. 7c, d), use ibase = 0.

= +1 Cut line leaves the upper corner of the base.

=   0 Cut line leaves the center of the base <default.>

= -1 Cut line leaves the lower corner of the base.

ibevel Flag for beveling the corner(s) of the base to reduce grid distortion (fig 7c, d.) If ibase = 0 both corners are
beveled. If ibase = 1 the corner opposite the wake cut is beveled.

= 0 No bevel <default.>

= 1 Corner(s) are beveled.

&nam3 -Algorithm Parameters
See Sorenson’s GRAPE code documentation (5) for more information on algorithm parameters. Most values can be

defaulted.

iterm Number of iterations for elliptic solver, usually 50 – 150. Use iterm=0 to check initial grid spacings, bound-
ary locations, etc. <default=100.>

idbg(9) Integer flag array with nine elements for writing intermediate debug grids to Fortran units 11-19. Useful for
debug, graphics, and possibly for grid generation in itself. For more information see Table 1 on page 18.
<default = 9*0.>

omega Relaxation factor for the elliptic solver, rarely changed. Acceptable values from 0. to 2. <default = 1.4.>

omegpq Relaxation factor for the inner boundary forcing functions, rarely changed. Acceptable values from 0. to 2.
Set to 0. for a Laplacian inner boundary. <default = 0.1.>

omegrs Like omegpq, but for the outer boundary.

aabb Exponent controlling the distance that angles and spacings at the inner boundary propagate into the interior.
Small aabb give large distances but slow convergence, and vice versa. Any value > 0. is acceptable. <default
= 0.45> Set to cluster more points near the wall, or to reduce the clus-
tering.

ccdd Like aabb, but for the outer boundary.

csmoo Smoothing coefficient for the periodic boundary. If , a 4th-difference smoothing operator is
applied to the periodic boundary. This allows the boundary points to float a little, which may reduce distor-
tion. Not usually needed, but worth a try if the periodic boundary looks bad. Acceptable values from 0. to 1,
typically 0.5. <default=0.>

iopen Flag for opening output files explicitly by name.

= 0 Output files are written to Fortran units without explicitly opening them. <default.>

= 1 Output files are opened by name:

grid.xyz = main grid file (binary)

index.dat = Swift index file (ASCII)

debugnn.xyz = debug grid files. nn = 11 – 19 refer to the Fortran unit number in Table 1 on page 18.

aabb 0.35= aabb 0.55 0.65–=

csmoo 0>
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&nam4 - Boundary Coordinates

zbc(3,2) and rbc(3,2)

Arrays of (z, r) coordinates that define three line segments that act as the upstream H-grid inlet, the blade C-
grid inlet, and the blade C-grid exit. The line segments are intersected with the hub and tip geometry, so the
coordinates need not lie exactly on the hub and tip. Anywhere nearby should work. Figure 3 illustrates the
locations of the boundary coordinate points. The first index indicates the segment and the second index indi-
cates hub or tip. The six points must be entered in the order shown below. The coordinates of the upstream
H-grid inlet may be set to zero if igin = 0.

zbc = z-H-hub-in, z-C-hub-in, z-C-hub-ex,   z-H-tip-in, z-C-tip-in, z-C-tip-ex

rbc = r-H-hub-in, r-C-hub-in, r-C-hub-ex,   r-H-tip-in, r-C-tip-in, r-C-tip-ex

&nam5 - Miscellaneous Parameters
Most of these parameters can be defaulted.

iswift Flag to set grid file format for RVC3D, Swift, or ADPAC.

= 0 RVC3D code format – no dummy grid line. Note: RVC3D only uses single block C-grids. <default.>

= 1 Swift code output – one or more blocks with dummy grid lines.

= 2 ADPAC code output – one or more blocks, no dummy grid lines. Note: For ADPAC the j- and k-direc-
tions are swapped, i.e., for x(i, j, k), j is the spanwise direction and k is the blade-to-blade direction.

Scaling Parameters
Parameters for rescaling, translating and flipping the input blade coordinates.

zscale Scale factor for blade z-coordinates, <default = 1.>

tscale Scale factor for blade θ-coordinates, <default = 1.>

rscale Scale factor for blade r-coordinates, <default = 1.>

ztrans Translation distance for blade z-coordinates, <default = 0.>

tflip Flag for flipping the blade in the θ-direction and reordering the points.

= 0 Do not flip blade θ-coordinates, <default.>

= 1 Flip blade θ-coordinates.

Outer Boundary Shape Control Parameters

dslap i- (streamwise) spacing at exit of C-grid. If dslap> 0, the grid lines at i = 2 and i = im-1 are repositioned
exactly dslap from the exit, overriding dswex. For multistage machines the next blade row should have
dsmax = dslapto give a perfect overlap of the grids.

exl Controls the shape of the left (upstream) periodic boundary of a C-grid. The boundary starts tangent to the
mean camber line and curves to axial at a rate determined by exl.

> 10 No curvature – the boundary is a linear extension of the mean camber line.

> 1.5 Slow curvature to axial.

= 1.5 Moderate curvature to axial <default.>

< 1.5 Fast curvature to axial.

= 1 Turns the boundary abruptly to axial.
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exr Controls the shape of the right (downstream) periodic boundary of a C-grid. The boundary starts tangent to
the mean camber line and curves to axial at a rate determined by exr.

> 10 No curvature – the boundary is a linear extension of the mean camber line <default.>

> 1.5 Slow curvature to axial.

= 1.5 Moderate curvature to axial.

< 1.5 Fast curvature to axial.

= 1 Turns the boundary abruptly to axial.

fswake Fractional distance along the downstream periodic boundary between the trailing edge and the grid exit,
where the j-grid lines from the trailing edge (i = itl) intersect the outer boundary, (fig. 1). The default value
of <1.> places the outer boundary point directly above and below the trailing edge point. On some blades
this can cause the j-grid lines to cross the trailing edge. In this case try setting to pull the grid
lines towards the downstream boundary.

ioble The periodic outer boundary for a C-grid is made up of three segments, an upstream segment, the mean-
camber line between the blades, and a downstream segment. The parameter ioble is an index which deter-
mines where the upstream segment joins the mean camber line. Values can be <11>, 10, 9 … The default
<11> starts the upstream segment at the leading edge. Smaller values move the starting point inside the pas-
sage, which can be useful if upstream part of the C-grid becomes distorted due to stagger, (fig. 1).

iwakex Flag for stretching the outer boundary grid spacing along the wake (i-direction).

= 0 Equally-spaced outer boundary along the wake.

= 1 Stretched outer boundary along the wake, <default.>

jwakex Flag for controlling the j-direction spacing along the trailing edge cut.

= 0 j-grid spacing is dsmin all along the trailing edge cut, <default.>

= 1 j-grid spacing expands from dsmin at the trailing edge to equally-spaced at the exit.

fswake 1.0<
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Hub, Tip, and Blade Input
Immediately following the namelist input are unformatted reads for a title, the hub and tip coordinates, and the blade coor-

dinates. Unformatted ASCII reads are used throughout.

Title

A title of  characters or less is read using the following Fortran input statement:

      read *,ititle

ititle An alphanumeric string of 80 characters printed to the output. The character string must be enclosed in sin-
gle quotes.

Hub and Tip Geometry
Hub and tip coordinate arrays as shown in figure 3 are read in as follows:

!     read hub & tip geometry
      read(5,*)nph,npt
      read(5,*)(zhub(i),i=1,nph)
      read(5,*)(rhub(i),i=1,nph)
      read(5,*)(ztip(i),i=1,npt)
      read(5,*)(rtip(i),i=1,npt)

nph Number of input hub points, min = 2, max = 321.

npt Number of input tip points, min = 2, max = 321.

zhub, rhub z, r coordinates of the hub.

ztip, rtip z, r coordinates of the tip.

Blade Geometry
The next line of input contains three variables read as follows:

!     blade input
      read(5,*)nbs,npb,nblade

nbs Number of blade sections, max. = 50.

npb Number of points around the blade, max. = 321.

nblade Number of blades around the wheel, used to determine the pitch.

This is followed by blade coordinates in one of four formats set by the input value of merid. The coordinates need not
intersect the hub and tip coordinates – they are spline fit if they span the endwalls, or are linearly extrapolated if they do not,
and the intersections are calculated by TCGRID. The four input options and their corresponding Fortran reads are as follows:

merid = 0 <default>

Blade input in general stacked sections. Cylindrical coordinates starting at the blade trailing edge, wrapping clockwise
around the blade, and repeating the trailing-edge point. Complete definition of the leading- and trailing-edges must be given.
Sections are stacked from hub to tip. Figure 5 shows the ordering of points for merid = 0.

!     merid=0: blade input in stacked sections, cyl. coords.
      if(merid == 0)then
      do k=1,nbs
        read(5,*)(zb(i,k),i=1,npb)
        read(5,*)(yb(i,k),i=1,npb)
        read(5,*)(rb(i,k),i=1,npb)
      enddo
      endif

80≤
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Here (zb, yb, rb) = (z, θ, r)-coordinates of the blade section.

merid = 1

Blade input in Crouse/Tweedt design code format. See Tweedt’s writeup on design code options. The point ordering
around the blade is the same as for merid = 0, as shown in figure 5, but the points are stacked from tip to hub.

!     merid=1: blade input in Crouse/Tweedt design code format
      if(merid == 1)then
      read(5,*)zbhub
      do k=nbs,1,-1
        read(5,*)dum
        read(5,*)dum
        read(5,*)(zb(i,k),i=1,npb)
        read(5,*)(yb(i,k),i=1,npb)
        read(5,*)(rb(i,k),i=1,npb)
      enddo
      endif

Again (zb, yb, rb) = (z, θ, r)-coordinates of the blade section.

zbhub A z-translation value added to all blade z-coordinates, to shift them to the same reference as the hub and tip.
Can also be done using namelist variable ztrans.

dum Two dummy records are included before each blade section.

merid = 2 or 3

Blade input in MERIDL format. See Katsanis and McNally’s report on MERIDL (3) for more information on MERIDL
input. Unlike MERIDL, TCGRID can handle purely radial flows without rotating the coordinate system. MERIDL input has
no leading- or trailing-edge definition, but TCGRID will add leading- and trailing-edge circles automatically. Points are input
from leading edge to trailing edge, and from hub to tip.

!     merid=2 or 3: blade input in MERIDL format
      if(merid > 1)then
      do k=1,nbs
        read(5,*)(  zbl(i,k),i=1,npb)
      enddo
      do k=1,nbs
        read(5,*)(  rbl(i,k),i=1,npb)
      enddo
      do k=1,nbs
        read(5,*)(th1bl(i,k),i=1,npb)
      enddo
      do k=1,nbs
        read(5,*)(th2bl(i,k),i=1,npb)
      enddo
      endif

merid = 2 (zbl, rbl, th1bl, th2bl)= (z, r, θ-upper-surface, θ-lower-surface) coordinates of the blade section, as shown in
figure 6.

merid = 3 (zbl, rbl, th1bl) = (z, r, θ)-coordinates of the mean-camber-line, ordered like merid = 2 (fig. 6),

th2bl = blade tangential thickness (θ-upper-surface – θ-lower-surface).
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Grid Output XYZ-File
Grids are stored using standard PLOT3D xyz-file structure. Single block grids can be read with the following code:

      read(1)im,jm,km                         !grid dimensions
!     read grid coordinates
      read(1)
     &(((x(i,j,k),i=1,im),j=1,jm),k=1,km),
     &(((y(i,j,k),i=1,im),j=1,jm),k=1,km),
     &(((z(i,j,k),i=1,im),j=1,jm),k=1,km)

Multiblock grids can be read with the following code:
      integer,dimension(3,10)::idx

      read(1)ngrid                            !number of grids
      read(1)((idx(l,ng),l=1,3),ng=1,ngrid)   !grid dimensions
!     loop over the grids
      do ng=1,ngrid
        im=idx(1,ng)
        jm=idx(2,ng)
        km=idx(3,ng)

        read(1)
     &  (((x(i,j,k),i=1,im),j=1,jm),k=1,km),
     &  (((y(i,j,k),i=1,im),j=1,jm),k=1,km),
     &  (((z(i,j,k),i=1,im),j=1,jm),k=1,km)
      enddo
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TCGRID Code Description
TCGRID is based on an old, 2-D version of the Steger/Sorenson GRAPE code (5, 6). The GRAPE code is used to gener-

ate blade-to-blade grids on several surfaces of revolution between the hub and casing. The individual blade-to-blade grids are
stacked and reclustered spanwise to form the 3-D grid. Additional inlet or clearance blocks are then generated algebraically.

Grids are generated in several sequential steps. Most steps are coded as separate subroutines, many of which can generate
PLOT3D compatible grid files for debugging purposes. The outline below lists the main subroutines of TCGRID in the order
that they are called, describes their function, and describes the debug flag and debug output generated. Indentation implies sub-
routine nesting.

Debug files are requested using the namelist array idbg(9) described in Table 1 on page 18. In general, if , a

debug grid file will be generated on Fortran unit . Grids are in PLOT3D format, may be 2-D or 3-D, and may be in mul-
tigrid format. If there is a problem with TCGRID, set idbg = 9*1 and plot fort.11 – fort.19 in turn. (Some files may not be gen-
erated depending on input options.) Refer to the outline below to determine at which step the problem occurred.

tcgrid.f

Main calling program.

1. setup.f
Reads the namelist, hub, tip, and blade input. Hub and casing geometries are input as arrays of (z,r) coordinates. Blade
geometries are input as arrays of (z,r,θ) coordinates. Several blade input formats are supported. The blade coordinates
can be scaled and translated if desired.
Output file: idbg(1) = 1, unit 11, 3-D blade as input (merid = 0 or 1.)
Output file: idbg(1) = 1, unit 11, 3-D blade after addition of leading- and trailing-edge circles (merid = 2 or 3.)

openfile.f - Opens files by name if .

2. inner.f (merid = 0 or 1)
Reclusters points around the blade sections. The leading and trailing edges are evenly-spaced. The trailing-edge spacing
is centered around the first blade input point (which is repeated as the last input point unless .) The leading-
edge spacing is centered around some fraction of arc length specified using dsra. If , the leading-edge spac-
ing is centered on the median input point. The blade surfaces are reclustered between the leading and trailing edges
using Hermite polynomials or hyperbolic tangent clustering. Inner.f also adds points on the base if .

3. merfix.f (merid = 2 or 3)
Converts MERIDL blade sections to GRAPE-type sections. Adds leading- and trailing-edge circles. Adds points on the
base if . Reclusters points around the blade sections.
Output file: idbg(2) = 1, unit 12, 3-D multigrid MERIDL blade as input (merid = 2 or 3).

lete.f - Computes leading- and trailing-edge circles for the MERIDL blades using the technique described in (4).

4. addht.f
Adds inlet and exit points to hub and tip arrays.

5. meridg.f
Generates a coarse meridional grid between the hub and casing. The grid is generated algebraically by connecting cor-
responding points on the hub and casing. The number of spanwise points should be about the same as the number of
input blade sections. If the meridional grid is equally-spaced spanwise. This option is good for simple
ruled blades or blades defined on equally-spaced stream surfaces. If the meridional grid is generated with
approximately the same spanwise clustering as the input blade sections.
Output file: idbg(3) = 1, unit 13, 2-D meridional grid between hub and tip.

6. blades.f
Intersects spanwise lines between blade sections with the streamwise lines of the meridional grid. This gives new blade
sections on the stream surfaces defined by the meridional grid.
Output file: idbg(4) = 1, unit 14, 3-D blade after interpolation onto meridional grid.

idbg n( ) 1=

n 10+

iopen 1=

nbase 0>
dsra 0=

nbase 0>

nbase 0>

iclus2d 0=
iclus2d 1=
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7. grid2d.f
Generates 2-D blade-to-blade grids along the meridional grid lines using an old version of the Steger/Sorenson GRAPE
code (refs. 5 and 6). GRAPE is strictly 2-D, so the 3-D blade sections are mapped to a 2-D system, where m
is the meridional coordinate defined by  and  is the mean radius.

GRAPE requires the specification of an inner and outer boundary. For a C-grid the inner boundary is defined by the
mapped blade coordinates plus a polynomial wake cut. A periodic outer boundary is defined using the mean camber line
inside the passage, with polynomial extensions up- and downstream. For an H-grid the boundaries are defined by the
blade surfaces and polynomial extensions up- and downstream. Angles and spacings are specified on the boundaries.
The angles are set to give normal grid lines at the blade and inlet, and vertical grid lines at the periodic boundaries. The
spacings are input using dsmin and dsmax.

outc.f - Generates the periodic boundary for a C-grid
outh.f - Generates the periodic boundary for a H-grid

An initial grid is generated algebraically. GRAPE uses an SLOR scheme to solve the Poisson equations, and is typically
iterated 100 iterations. Dummy grid lines may be added algebraically.

grelax.f - Solves the elliptic grid equations.
dumgl.f - Adds dummy grid lines if iswift = 1.

Output file: idbg(5) = k, unit 15, 2-D blade-to-blade grid on surface k of the meridional grid.

The 2-D,  grid is transformed back to .
Output file: idbg(6) = 1, unit 16, 3-D grid before spanwise clustering.

8. fill3d.f
Reclusters the 2-D grids spanwise using either Hermite polynomials or hyperbolic tangent clustering to make a full 3-D
grid. Separate clustering functions are used in the hub clearance, blade, and tip clearance regions.

9. ginlet.f
Generates an algebraic H-grid block upstream of the blade if . The boundaries are defined by the hub and cas-
ing, and the H-grid and C-grid inlet boundaries. Transfinite interpolation (7) is used to fill in the interior points. The
resulting meridional grid is swept tangentially.
Output file: idbg(7) = 1, unit 17, 3-D inlet H-grid.

10. gtip.f
Generates an algebraic O-grid block in the tip clearance region if .
Output file: idbg(8) = 1, unit 18, 3-D tip clearance O-grid.
Generates an algebraic O-grid block in the hub clearance region if .
Output file: idbg(9) = 1, unit 19, 3-D hub clearance O-grid.

11. ospan.f
Prints the inlet, leading edge, trailing edge, and exit coordinates.

12. outmg.f
Transforms  to (x,y,z) and writes the grid file on unit 1 in PLOT3D format.
Output file: unit 1, 3-D grid.
Output file: unit 10, ASCII index file for use by the Swift code. Contains grid sizes and indices that may be needed for
other codes.

m r θ×,( )
dm

2
dz

2
dr

2
+= r

m r θ×,( ) z r θ, ,( )

igin 1=

igclt 1=

igclh 1=

z r θ, ,( )
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i Value Unit Subroutine Grid Size Plot3d Format Grid Description

1 1 11 Input npb, nbs, 1 3d/unf
General blade as input (merid = 0, 1)
MERIDL blade after l.e. & t.e. addition
(merid = 2, 3)

2 1 12 Merfix nbs, npb, 1 3d/unf/mg MERIDL blade as input (merid = 2, 3)

3 1 13 Meridg i2d, k2d 2d/unf 2-D meridional grid between hub and tip

4 1 14 Blades npb, k2d, 1 3d/unf 3-D blade after interpolation onto 2-D grid

5 k 15 Grid2d im, jm, 1 2d/unf 2-D blade-to-blade grid on section k

6 1 16 Grid2d im, km,k2d 3d/unf 3-D rid before spanwise clustering

7 1 17 Ginlet imi, jmi, kmi 3d/unf 3-D inlet H-grid

8 1 18 Gtip imt, jmt, kmt 3d/unf 3-D hub clearance O-grid

9 1 19 Gtip imh,jmh,kmh 3d/unf 3-D tip clearance O-grid

Table 1 — Debug grid files available with idbg options.
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Figure 1 — Top: Blade-to-blade H–C grid for a transonic compressor rotor.
Bottom: TCGRID nomenclature and input variables for blade-to-blade grid.
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Figure 2 — Top: Blade-to-blade H-grid for a compressor rotor hub section.
Bottom: TCGRID nomenclature and input variables for H-grids.
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Figure 3 — Top: Meridional H–C grid for a transonic compressor rotor.
Bottom: TCGRID nomenclature and input variables for meridional grid.
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Figure 4 — Top: Tip clearance O–grid for a transonic compressor rotor.
Bottom: TCGRID nomenclature and input variables for spanwise grid.
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Figure 5 — Blade coordinate input variables formerid=0 or 1
Leading and trailing edge spacing parameters.
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Figure 6 — Blade coordinate input variables formerid=2, 3.
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Figure 7 — Options for blunt trailing edges.

b. Centrifugal impeller trailing edge. ibase = 1, nbase =
8, ibevel = 0.

a. Effect of ibase on location of wake cut.

c. Inlet guide vane trailing edge. ibase = 0, nbase = 8,
ibevel = 1.

d. Inlet guide vane trailing edge. ibase = 0, nbase = 8,
ibevel = 0.


