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I ntroduction

Swift is a multiblock computercodefor analysisof three-dimensionatiscousflows in turbomachineryThe codesolves
thethin-layerNavier-Stokesequationgisinganexplicit finite-differencetechniquelt canbeusedto analyzdinearcascadesr
annularbladerows with or withoutrotation. Threeturbulencemodelsareavailable.Limited multiblock capabilitycanbeused
to model tip clearance fies and multistage machines.

Swift hasbeentestedon numerouganandturbinebladesandhasbeenusedhearily at NASA GlennResearciCenterfor
fananalysisanddesign.analysisof turbineendwall heattransfer andmary otherapplicationsSwift is amultiblock versionof
RVC3D, which wasoriginally describedn (2) alongwith calculationsof a blunt fin andan annularturbine. The flow equa-
tions, numericalmethod,and calculationsof a transonicfanweregivenin (3). The algebraicturbulencemodelsandcalcula-
tionsof turbineendwall heattransferweredescribedn (4), andthek-w turbulencemodelwasdescribedn two-dimensionsn
(5). The multiblock codeknown as Swift wasintroducedin (6) alongwith calculationsmadeof tip clearancdlow in atran-
soniccompressorThe preconditioningschemeand calculationsof a large low-speedcentrifugal impeller were describedn
(7). Multistage capability was describedin (8) along with calculationsof a two-stageturbine. Finally, the AUSM* and
H-CUSP upwind schemes and SSiFsion of the ks model were described in (13.)

Thisreportsenesastheusers manualanddocumentatiorior Swift. The codeandsomeaspect®f thenumericalmethod
are described Stepsfor codeinstallationand executionare given for both unix workstationsand Windows PC’s. The grid,
input, and outputariables are described in detail.



Features of Swift

* Newin Version 300
AUSM™* & H-CUSP upwind schemes
k-w SST turbulence model
Surface roughness input as actual height instead of wall units
H-grids for blades or ducts
Simultaneous modeling of hub & tip clearances
Simultaneous output of inlet & exit mass flow
Loss and efficiency calculated across each blade row

Code distributed in tarred format that should compile and run directly on unix machines, or a zipped format that should
compile and run directly on Windows PC'’s.

Code converted to Fortran 90

Dynamic memory allocation reduces memory requirements and avoids recompiling for most problems

Note: For inlet H-grids, the dummy grid line at j=1 has been deleted in Swift v.300. Compatible grids can be generated
with TCGRID v.300. Fileswith inlet H-grids generated with previous versions of TCGRID or Swift are incompatible with
version 300. Please let me know if this creates a serious problem.

* Applications
Linear cascades
Axia compressors and turbines
Isolated blade rows or multistage machines
Centrifugal impellers and mixed-flow machines without splitters
Radial diffusers
Pumps
Rectangular ducts
* Multi-block Capability
C-grids around blades
H-grid upstream
O-gridsin hub- or tip-clearance regions (or periodic clearance model)
Mixing-planes between blade rows

* Formulation
Navier-Stokes equations written in Cartesian coordinates with rotation about the x-axis
Thin-layer equationsin streamwise direction, all cross-channel viscous terms retained
Second-order finite-difference discretization
* Turbulence Models
Baldwin-Lomax (algebraic)
Cebeci-Smith (algebraic)
Wilcox's k-w (two-equation)
Surface roughness effectsin all models
* Numerical Method
Explicit multi-stage Runge-Kutta scheme
Variable time-step and implicit residual smoothing for convergence acceleration
Preconditioning for low-speed (incompressible) flows
* Input
General grid filesin PLOT3D format, usually generated using TCGRID
Namelist input of flow parameters
* Printed Output
Residual history
Spanwise output of circumferentially-averaged flow quantities at the grid inlet and exit
Streamwise output of blade surface properties
Printed output can be edited manually and plotted with Microsoft Excel or other line plot software

e Computer Requirements



Runs as a batch process on most unix, linux, or Windows computers

Parallel processing on SGI computers using OpenMP directives

Runs well under linux, has been run under Windows

Solution times range from one to several hours on modern workstations

Written in Fortran 90, requires a Fortran 90 compiler

Graphical Output

No graphical output is provided with Swift but access to some CFD visualization package is absolutely necessary to view
and evaluate the solutions. Grid and solution files arein standard PLOT3D format and can be read directly and plotted with
public-domain CFD visualization tools PLOT3D and FAST, or the commercial tools EnSight, FIELDVIEW, or TecPlot.
Check the following web sites for more information.

PLOT3D & FAST: http://www.nas.nasa.gov/Research/Software/swdescription.html

TecPlot: http://www.amtec.com/
FIELDVIEW: http://www.ilight.com/
EnSight: http://www.mscsoftware.com.au/products/software/cei/ensight/
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Table 1 — Runge-Kutta parameters a*—a° and maximum Courant number A™ for k-stage schemes.

Numerical Method

Multistage Runge-Kutta Scheme

Multistageschemesvere developedby JamesonSchmidt,and Turkel (10) asa simplification of classicalRunge-Kitta
integration schemedor ODE’s. The simplification reducesthe requiredstorage but also reduceshe time-accurag of the
schemesusuallyto secondorder Thefollowing discussiorof theseschemeshouldgive someguidancean choosingparame-
ters for running the code.

A k-stage scheme may be written as:

qk = qo—akAt(R:(+ RVO)

whereq is anarrayof five conserationvariables(see“Solution Q-File”, pp. 27), k is the stagecount, q0 is the previoustime

step,ak arethemultistagecoeficientsdiscussedbelow, At is thetimestep,R'l( is theinviscid partof theresidual and RVO is

theviscouspartof theresidualincludingthe artificial dissipation Note that R'l( is evaluatedevery stage put RV0 is evaluated

only at the initial stage for computationaligiengy.

ThemaximumstableCourantnumberA  for ann- stageschemecanbeshovn to beA” = n-1. Theacltualstabllltyllmlt
dependwn the choiceof a™. For consisteng a" mustequall, andfor second-grdetime accurag a mustequall/2.
Thevaluesof o usedin the codeandthe theoreticamaximumCourantumberA aresetby a datastatemenin subroutine
rk and are gien in table 1.

The numberof stageds setwith the variablenstg Using nstg = 4 is recommendedalthoughJamesoret. al. tendto
favor 5 stages.Updatingthe physical and artificial viscosity terms more often increaseghe robustnessof the multistage
schemeshut alsoincreaseshe CPUtime perstage Settingndis=2 causeghe 4-stageschemeo updatethe dissipatie terms
during stagesl and2, andcauseghe 5-stageschemdo updatethemduring stagesl, 3,and5. A goodcompromisés nstg=4
andndis=2.

A spatially-\arying At is usedto acceleratehe corvergenceof the code.Settingivdt = 1 causeshe Courantnumberto
be setto a constan{input variablecfl) everywhereon the grid. The spatially-\arying At optionis highly recommended-or a
multiblock grid the time stepis recalculatedevery iteration. For a single block grid the time stepis storedandrecalculated
everyicrnt iterations.Seticrnt to amoderateiumbery e.g. 10, sothatthe time stepis recalculatedccasionallyThetime step
is recalculated when the code is restarted and may cause jumps in the regichtasifoo big.

Implicit residualsmoothing(describedater) may be usedto increase¢he maximumCourantnumberby afactorof two to
three, thereby increasing the wemence rate as well.

Artificial V iscosity

The codeusessecond-ordecentraldifferenceghroughoutand requiresan artificial viscosity term to prevent odd-even
decoupling A fourth-differenceartificial viscositytermis usedfor this purposeThistermis third-orderaccuraten spaceand
thusdoesnot affect the formal second-ordeaccurag of the schemeThe input variableavisc4scalesthe fourth-difference
artificial viscosity andshouldbe setbetween).25and2. Startwith avisc4=1.0 If the solutionis wiggly, increaseavisc4by
0.5.If it is smooth try reducingavisc4by 0.5.Largervaluesof avisc4mayimprove convergencesomavhat, but the magnitude
of avisc4has little efect on predicted losses ofiefency.

The codealsousesa second-difierenceartificial viscosityterm for shockcapturing.The termis multiplied by a second
differenceof the pressurehatis designedo detectshocks Note thatthe second-diferenceartificial viscosityis first-orderin
spacesothatthe solutionreducedo first-orderaccuratenearshocks.Two otherswitchesdevelopedby Jamesorf10) areused
to reduceovershootsaroundshocks.The input variableavisc2scaleshe seconddifferenceartificial viscosity andshouldbe



set between 0. and 2. Use 0. for purely subsonic flows, and start with avisc2=1.0 for flows with shocks. If shocks are wiggly,
increase avisc2 by 0.5. If they are smeared out, try decreasing avisc2 by 0.5. Shocks will be smeared over four or five cells
regardless of the value of avisc2. The magnitude of avisc2 also hasllittle effect on predicted loss or efficiency.

Eigenvalue scaling described in (3) is used to scale the artificial viscosity terms in each grid direction. This greatly
improves the robustness of the code. The artificial viscosity is also reduced linearly by grid index near wallsto reduce its effect
on the physical viscous terms. Input variables jedge, kedgh, and kedgt are the indices where the linear reduction begins.

A first-order artificial viscosity term may be added to smooth the solution drastically during solution start-up. The variable
aviscl scales this term. First-order artificial viscosity will greatly improve the convergence rate while greatly diminishing the
accuracy of the solution. It will thicken boundary layers, smear shocks, and greatly increase predicted loss. Do not use first-
order artificial viscosity except to start a new solution. A warning is printed in the output when aviscl1>0.

Implicit Residual Smoothing

Implicit residual smoothing was introduced by Lerat in France and popularized by Jameson in the U.S. as a means of
increasing the stability limit and convergence rate of explicit schemes. Theideais simple: run the multistage scheme at a high,
unstable Courant number, but maintain stability by smoothing the residual occasionally using an implicit filter. The scheme
can be written as follows:

(1-£g8) (1—£,8,)(1-£ 8 )R = R

where g, 2 and & are constant smoothing coefficientsin the three body-fitted coordinate directions €, n, and ¢ indicated in
figure 1. Here & isasecond-difference operator, R isthe smoothed residual, and R is the unsmoothed residual .

It can be shown that if the scheme converges, implicit residual smoothing does not change the solution. Linear stability
theory shows that the scheme can be made unconditionally stableif €; isbig enough, but also shows that the effects of the arti-
ficial viscosity are diminished as the Courant number isincreased. In practice the best strategy seems to be to double or triple
the Courant number of the unsmoothed scheme. If the residual is smoothed after every stage, the theoretical 1-D values of €;
needed for stability are given by:

e

q\*

where A~ is the Courant limit of the unsmoothed scheme (given in the previous table,) and A isthe larger operating Courant
number. For example, to run afour-stage scheme at a Courant number A = 5.6, the smoothing coefficient should be:

1r5.607 _
g > Z[EEED - 1] = 0.75

A singlevariable eps = ¢ isinput to Swift. The 1-D limit given above usually gives areasonable estimate for €, but the
code will converge best when € is minimized. Values of €, €., and € are evaluated at each grid point within the code by
scaling eps using the same Eigenval ue scaling coefficients used for the artificial dissipation. This has proven to be quite robust.

In rare cases it may be necessary to increase the residual smoothing coefficient in a particular direction. This can be
accomplished using input variables epi, epj, and epk, which are constants (usually 1.) that multiply €; at each point.

Implicit residual smoothing involves a scalar tridiagonal inversion for each variable along each grid line in each direction.
It adds about 20 percent to the cpu time when applied after each stage. Smoothing can be done after every other stage to reduce
cpu time (about 7 percent,) but eps must be increased (approximately doubled.)

Recommended starting values are: nstg = 4, cfl = 5.6, irs = 1, and eps = 0.75. If the code blows up quickly try
increasing eps to 1.5. Very large values of eps (e.g. > 3) may stabilize a stubborn calculation but prevent the residuals from
decreasing. If the residuals drop alittle then climb to alarge, constant value, epsis probably too big and the solution is proba-
bly incorrect.

Preconditioning

Density-based schemes like Swift solve the continuity equation by driving the density residua to zero. For low speed
(nearly incompressible) flows the density residual is physically near zero, and the schemes fail to converge. Preconditioning,



described by Turkel in (12) improves the convergence rate in two ways. First, it replaces the g-variables
a = [p, pu, pv, pw, €] with variablesthat are better-behaved at low speeds W = [p, pu, pv, pw, h], where p is the pressure
and h isthe total enthalpy. Second it multiplies the equations by a matrix designed to equalize the wave speeds of each equa-
tion. The preconditioning matrix hasthe local flow velocity in the denominator and must be limited when the vel ocity becomes
small. The preconditioning operator is designed so that it has no effect on the steady-state solution.

Preconditioning works extremely well for the Euler equations and less well for the Navier-Stokes equations. It will allow
solutions at very low speeds that simply would not work otherwise.

H-CUSP Scheme

The H-CUSP upwind scheme was developed by Tatsumi, Martinelli, and Jameson in 1994-5. The scheme isimplemented
as a standard central-difference (C-D) flux plus a dissipative flux. For efficiency the dissipative flux is only updated after the
first stage or two the Runge-Kutta scheme. Nevertheless, the H-CUSP scheme is 30-40 percent slower than the standard C-D
scheme. The H-CUSP scheme has excellent shock capturing properties but is alittle more dissi pative than the C-D or AUSM™*
schemes. Details of the implementation of the H-CUSP schemein Swift are given in (13.)

The dissipative flux is calculated using a a blend of two schemes: the SLIP scheme and the CUSP scheme. The SLIP
(Symmetric Limited Positive) scheme is used at low speeds. It adds a second difference of the conservation variables to the
C-D flux. The conservation variables are evaluated at cell centers using the SLIP limiter, which gives a third-order dissipation
in smooth regions of the flow and first-order dissipation near shocks. The CUSP (Convective Upward Split Pressure) schemeis
used at high speeds. It adds upwind differences of the inviscid fluxes to give a true upwind scheme. The fluxes are split into
advective and pressure parts similar to the AUSM* scheme. The H-CUSP scheme is based on the total enthalpy, while the E-
CUSP scheme (not included in Swift) is based on internal energy. Switching between the SLIP and CUSP schemes is done
using piecewise linear functions of the interface Mach number.

AUSM* Scheme

The Advection Upstream Splitting Method (AUSM) upwind scheme was introduced by Liou and Steffen in 1991. Since
the AUSM scheme evaluates the inviscid fluxes using true upwind differences at each stage of the Runge-Kutta scheme, it is
40-50 percent slower than the standard C-D scheme. The AUSM™ scheme has excellent shock capturing properties and seems
to be more robust at low speeds than the C-D or H-CUSP schemes. Details of the implementation of the AUSM™* scheme in
Swift are givenin (13.)

The AUSM scheme splits the inviscid fluxes into advective and acoustic parts, and differences them separately. Upwind-
ing depends on polynomial functions of the cell interface Mach number. Second-order accuracy is maintained using the van
Albada limiter. Liou revised the polynomial functionsin 1996 and renamed the scheme AUSM™*.

In 1999 Liou and Edwards described a numerical speed of sound, which makes the inherent numerical dissipation of the
scheme behave properly even at very low speeds. Two additional diffusive terms are also included in the scheme to insure pres-
sure-velocity coupling at low speeds:. a pressure-diffusion term is added to the interface Mach number, and a velocity diffusion
term is added to the interface pressure.



Grids

Swift canhandlesingle-blockgridsandalimited variety of multi-block grids. GridsareusuallygeneratedisingTCGRID
(9). Dummygrid linesareusedto handleperiodicboundaryconditionsandtransferof informationbetweerblocks,andmust
beincludedin thegrid file. All grid typescurrentlysupportedy Swift will have adummygrid line atj=jm, exceptfor gridsin
rectangulaductswhich have nodummygrid line. Gridsarestoredin standard®LOT3D format(se€Grid XYZ-File”, pp.27.)

Theconnectvity betweerthegridsis specifiedusinganindex file (see‘Index File”, pp.22.) In TCGRID, settingiswift=1
in namelist 5 will automatically addummy grid lines and produce a preliminary diee.

C-grids (Blades)

ThebasicSwift grid consistf a C-typegrid aroundablade,asshovn in figuresl and2. Thei-directiongoesfrom i=1 at
thelower exit to i=im atthe upperexit. Thej-directiongoesfrom j=1 atthebladeto j=jm-1 atthe periodicboundary(j=jm at
thedummygrid line.) Thek-directiongoesfrom 1 atthehubto k=km atthetip. Calculationgunwith asinglegrid avoid some
data I/0 and thus run about 10 percastdr than a multiblock grid with the same number of points.

H-grids (Upstream, Blades, Rectangular Ducts)
Threetypesof H-gridsaresupportedn Swift v.300.Thetypeof H-grid is flaggedby index file variableil (seelndex File,
pp.22.
1. An H-grid canbeaddedo extenda C-grid upstreamasshavn in figure2. A dummygrid line is neededatj=jm to apply
the periodic boundary conditions. Flagged by seiting.
2. A singleH-grid canbeusedinsidea bladepassageasshavn in figure 3. A dummyagrid line is neededat j=jm to apply
the periodic boundary conditions. Multiblock grids are not supported with this grid type. Flagged byiketting
3. An H-grid canalsobe usedinside a rectanguladuct (not shavn.) No dummygrid lines areneededMultiblock grids
are not supported with this grid type. Flagged by settind.
In eachcasethei-index goesfrom inlet to exit, the j-direction goesfrom bladeto blade,andthe k-directiongoesfrom hubto
tip.

O-grids (Hub and Tip Clearance Gaps)

O-typegrids canbe usedto resolhe the hub or tip clearanceegionsof blade(visible in figure5.) Clearanceegionscan
alsobe modeledusinga simpleperiodicboundaryconditionthatdoesnot requiregriddingtheregion. For O-gridsthei-direc-
tion startsatthetrailing edgecut andwrapsaroundthe O. Thej-direction startsat the centerine cutandgoesto the perimeter
of theO. j=jm is adummygrid line thatoverlapsthe connectingC-grid by onepoint. The k-directiongoesfrom the hubto the
blade for hub clearances, or from the blade to t he casing for tip clearances.

Multistage Grids

Using TCGRID, multi-stage grids must be generatedlvg-rov. A grid for a one-stage turbine is stroin figure 4.

Themeridionalgrid mustbecontinuousacrossmultistagegrids. This meanghatall gridsmusthave identicalhubandcas-
ing coordinategzhub,rhub, etc.,identicalnumberof spanwisgointskm, identicalspanwisespacingparametersishub dstip
etc.,andidentical clearanceparametersiNeighboringgrids musthave matchingdownstream/upstreafnoundarycoordinates
zbc, rbc

Bladesmustbe orientedcorrectlyin the 6-directionandplacedin their correctaxial location. TCGRID variableszscale
tscale rscale ztrans,andtflip will help with blade placement.

Dummygrid linesmustoverlapthe neighborsexactly onecell, asshavn in figure 4. The spacingaheadof theinlet is set
usingdsmax The spacingat the exit canbe setusingdslap Thusdslapfor the upstreangrid mustequaldsmaxfor thedown-
streamgrid. It maytake afew iterationsto getnicely overlappinggrids. It mayhelpto startwith thedownstreangrid andwork
upstream.

Grid files from neighboringbladerows are combinedinto a multi-block PLOT3D file usingthe includedutility routine
MULTIX, which promptsfor file namesand shouldbe self-explanatory TCGRID generatesndex files for eachbladerow.
These must be mged manually using an editor

Additional details about generating multistage grids arergin the TCGRID uses’'manual.



Getting Started — Unix

Unpacking
For unix systems Swift is supplied as a gzipped tar file called swift.tgz. To open:
gunzip swift.tgz
tar -xvf swift.tar
Thiswill create adirectory called swift.300 with subdirectories for the source, documentation, and test cases.

Compiling
Swift must be compiled with a Fortran 90 compatible compiler. Edit modules.f90 and change the maximum array size if

desired (see Parameter Satement below.) Edit the Makefile and change the compiler name (f90) and options (OPTS) as neces-
sary for your compiler. Full optimization and no debug are recommended. On SGI machines, the -apo option compiles Swift
for multiple processors.

cd swi ft.300/src; make
The executable file swift remains in the src directory. To delete the object files and executable,

make cl ean

Important Note: Modules.f90 and mut1d.f90 contain several Fortran 90 modules that are used within other routines. They
must be compiled before any other routines are compiled. If you ever need to recompile, be sure to compile modules.f90 and
mut1d.fo0 first.

Parameter Statement
Swift uses dynamic memory alocation for most arrays to avoid redimensioning. However, for programming convenience
the maximum size of many work arrays are set using a Fortran modul e defined in modul es.f90.
nmodul e maxsi ze
I Maxi mum di nensi ons of g-vector & small arrays
I Must be conpiled first
I Change & reconpile for larger grids

save
i nt eger, paramet er:: ni =255, nj =54, nk=63
i nt eger, paramet er: : maxj k=max(nj, nk)

end nodul e nmaxsi ze
This grid size (255 x 54 x 63) islarge enough for most problems but can be increased to any size as needed.

Running Swift for the Goldman Turbine Vane Test Case

First cd to the appropriate directory and generate the grid using TCGRID.
cd swi ft.300/gold
~/tcgrid.300/src/tcgrid < gold.int
The grid should run in a few seconds. The output can be redirected to afile if desired. The grid and index file are written
to the appropriate Fortran units for Swift, but it helps to give them descriptive names and link them back to the correct unit.
nmv fort.1 gold.xyz; In gold.xyz fort.1
nmv fort.10 gold.ind; In gold.ind fort. 10
Gold.ins contains the namelist input. It should be set up to run 50 iterations of the central-difference scheme. Run Swift as
a standard unix process.
../src/swift < gold.ins > gold.out &
The 50 iterations should run fairly quickly. You will need to run about 1500 iterations to get a converged solution. The
output solution fileiswritten to fort.3 in binary format. Rename it and link it to fort.2.
nmv fort.3 gold.0050.q9; In gold.0050.q fort.2
Edit the input file, set iresti=1 and itmax=1450. Then run Swift again as before.

Alter native |
Gold.jcl isaunix shell script that names the files, cats the namelist input to afile named input, and runs Swift. Two shell
variables are set near the top. pin is a prefix for the input file names. The solution input file is named pin.gq (not used if



iresti=0.) pout is a prefix for the output file names. The solution output file is named pout.q and the printed output is named
pout.out. The shell variable kw is aflag for the k-w file names. If kw=1 the k-w files are named pin.kw and pout.kw.

Alternativell

Setting iopen=1 in the input file causes al files to be opened explicitly with a default file name. For example, the grid must
be named grid.xyz. Other file names are given in Table 2 on page 11. By using the default file names you can avoid the file
linking steps, but you may want to rename the files with more descriptive names | ater.

It isalso possible to input your own file names using the namelist input. See the note under File Names, pp. 11.



Getting Started — Windows

Unpacking
For Windows, Swift is supplied as a zipped file called swift.zip. Use Winzip or PKZIPto unzip it. Thiswill create adirec-
tory called swift.300 with subdirectories for the source, documentation, and test cases.

Compiling

Swift must be compiled with a Fortran 90 compatible compiler. Compaqg Visual Fortran works well, but | don't have
enough experience to give step-by-step instructions. Please let me know if you can adapt my Makefile or have any information
about other compilers. In general, using Developer Studio:

Go to swift/src

Open a new Fortran console application

Edit modules.f90 and change the maximum array size if desired (see Parameter Satement below.)

Set compile options for full optimization and no debug tables

Compile modules.f90 and mut1d.f90 first

Build swift

Important Note: Modules.f90 and mut1d.f90 contain several Fortran 90 modules that are used within other routines. They
must be compiled before any other routines are compiled. If you ever need to recompile, be sure to compile modules.f90 and
mut1d.fo0 first.

Parameter Statement
Swift uses dynamic memory allocation for most arrays to avoid redimensioning for most problems. However, for pro-
gramming convenience the maximum size of many work arrays are set using a Fortran modul e defined in modules.f90.
nmodul e maxsi ze
I Maxi mum di nensi ons of g-vector & small arrays
I Must be conpiled first
I Change & reconpile for larger grids

save
i nt eger, paramet er: : ni =255, nj =54, nk=63
i nt eger, paramet er: : maxj k=max(nj, nk)

end nodul e nmaxsi ze
This grid size (255 x 54 x 63) islarge enough for most problems but can be increased to any size as needed.

Running Swift
To run the Goldman turbine vane test case, open a DOS window (Start/Programs/A ccessories/Command prompt.)
cd swi ft.300\gold
Edit the TCGRID input file gold.int and set iopen=1in namelist 3. Thiswill cause al filesto be opened with the default names
givenin Table 2 on page 11. Now run TCGRID.
c:\tcgrid.300\src\tcgrid < gold.int
The grid should run in a few seconds. The output can be redirected to afile if desired. The grid and index file will be named
grid.xyz and index.dat respectively.
Edit the Swift input file gold.ins and set iopen=1 in namelist 3. The input should already be set up to run 50 iterations of
the central-difference scheme. Now run Swift.
..\src\swift < gold.ins > gold. out
The 50 iterations should run fairly quickly. You will need to run about 1500 iterations to get a converged solution. The
output solution file iswritten to q_out.q in binary format. Renameit to g_in.qg.
renane g_out.q g_in.q
Edit the input file, set iresti=1 and itmax=1450. Then run Swift again as before.
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Unit Default name | Description Reference

fort.1 | grid.xyz grid filefrom TCGRID Grid XY Z-File, pp. 27

fort.2 | g.in.q binary input solution file, read if iresti=1 Solution Q-File, pp. 27

fort.3 | g outq binary output solution file, written if iresto=1 | Solution Q-File, pp. 27

fort.10 | index.dat ASCII index file, required Index File Variables, pp. 22

fort.7 | kw_in.kw binary input k-wfile, read if ilt= 4 0r 5 Turbulence Model k-w File, pp. 27
fort.8 | kw_out.kw binary output k-w file, writtenif ilt= 4or 5 | Turbulence Model k-w File, pp. 27
fort.13 | profile_in.dat | ASCII input ginfile readif igin= 1 Inlet and Exit Profiles, pp. 27
fort.14 | profile_ex.dat | ASCII output pex file, read if ipex = 1 Inlet and Exit Profiles, pp. 27
fort.15 | profile_out.dat | ASCII output span file, written if ispan = 1 Inlet and Exit Profiles, pp. 27

Table 2 — Files used by Swift

File Names

The namélist input file for Swift is read from Fortran unit 5 (standard input.) Printed output from Swift is written to For-
tran unit 6 (standard output.) Files linked to Fortran units 1-3, 7, 8, 10, and 13-15 may be used in the execution of Swift,
depending on input options. The files are described in Table 2 above.

All input files read using unformatted read statements, i.e., read(5,*), so you don’'t have to worry about getting the datain

the right columns.

If iopen=0 the files are not explicitly opened in the code. You must link the files to the appropriate Fortran unit manually

under unix.

If iopen=1 all files are opened using the default names given above. This will be most useful under Windows.

Note: It isalso possible to input your own file names using the namelist input. Edit subroutine openfile.f and uncomment the

one line that reads namelist 7 and recompile.
I read (5,nl7)
Now add namédlist & nl7 to your input file, and reset the prefix of any default file names using character strings, e.g.,
&nl7 grid="gold.xyz’ q_in="gold.0050.q’ &end
Any file names not reset retain their default names.

11




Ref. State English Units Sl Units
Por 2116.8 Iboy/ft? 1.0135x 10° Pa
Tor 519R 288.3K
Cor 1116.7 ft/sec 340.39 m/sec
Por 0765 Ib/ft3 1.2246 kg/m?®
PorCor 85.5057 |by,y/sec/ft? 416.8416 kg/sec/m?
Hor 1.285 x 10°° Ib,,/(ft sec) 1.91 x 107 kg/(m sec)
renr 6.65 x 108 [1/ft] 2.182 x 107 [1/m]
5.54 x 10° [1/in] 2.182 x 10* [1/mm]

Table 3 — Standard reference quantities usually used for nondimensionalization.
Nondimensionalization

The grid xyz-file may be input in arbitrary units of length. The input parameters to Swift and the variables in the output g-
file are strictly nondimensional, with the exception of lengths which must have the same units as the grid.

All quantities are nondimensionalized by an arbitrary reference stagnation state defined by stagnation density p,, , sonic
velocity ¢, , and viscosity [, , where [, is defined at the stagnation temperature T, =c,, /(YR) . Standard atmospheric
conditions, given in table 2 above, are often used for the reference state. However, any self-consistent state may be used as
long as the units of length are consistent with the grid units.

Input pressures and temperatures are nondimensionalized by P, and T, , respectively. Within the code pressures are
usually nondimensionalized by pq,Co, = YP,, . Inlet pressures and temperatures are nondimensionalized similarly, so that
Poin = Toin = 1 for casesin which theinlet is at standard conditions. However, Py, and T, , can aso be set arbitrarily
using the initial condition input (see“Initial Condition Input”, pp. 21) or aqin file (see “Inlet and Exit Profiles’, pp. 27.) Input
velocities are sometimes nondimensionalized by ¢, and sometimes input as a Mach number.

The reference state defines a reference Reynolds number Renr which must be input to Swift (see “&nam5 - Viscous
Parameters’, pp. 18.) Renr isgivenby renr = p,,.Cq,/ Ko, and has units of [1/grid units.] Renr remains the same for all cases
with the same reference state and grid units.

Output quantities should be self explanatory, except for the mass flow. The mass flow may be output with the residual his-
tory (see “&nam6 - Output Control”, pp. 20, variable mioe.) Mass flow is also output in the tables labeled “theta-averaged
quantities,” at the bottom of the column labeled “% mdot.” In either case, the mass flow is nondimensionalized by p,, c,, and
has units of [grid units]z. The mass flow through the full annulus is given (rather than mass flow per passage,) so that the
printed mass flow should be constant through a multistage machine.
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Calculationsfor liquids

Nondimensionalization
Nondimensionalize using conditions for liquids, but calculate c,, asif for air.

R = 1716.58 ft?/(sec® R) ideal gas constant

y =14 Cp/C,

Tor =60F=519R

Cor = 1116.7 ft / sec

Por =62.37 Ib, / ft3

Por = por R Tor = 1,725,644 by / ft?

Vor = 1.217x10"° 12/ sec kinematic viscosity for water at 60 F
vispwr =1 laminar viscosity ~ T

renr =cor/Vor = 7.646x10° /in (convert to appropriate grid units)
om = omega{rad/ sec] / cy (convert to appropriate grid units)

Initial Conditions
Calculate the inlet and exit velocities V; , from the flow rate Q and areas A using:
V = Q/A
Approximate the Mach numbers for the initial conditions using:
M=V/cg,
Calculate the total pressurerise AP, from the head rise H using:
HAP, = pgH
Calculate the pressureratios for the initial conditions using:
Poo/Po1 = (POl + APO)/ Por -
Calculate the temperature ratios for the initial conditions using:
To2/ Tor = Po2/Pos
Calculate the static pressurerise AP using:
AP = AP, —0.5p(VZ-V?)
Calculate prat using:
prat = P,/Py = (P, +AP)/Py,
This should give a solution close to the correct flow rate, but you will probably have to run several cases with varying prat
to get the flow rate exactly.

Running Swift
You will have to use preconditioning to get a converged solution, but sometimes it is hard to get the preconditioning
started. Run Swift 100 — 200 iterations with preconditioning turned off using:
icdup=0, nstg=2, avisc2=1, avisc4=1, cfl=2.5, eps=1.5, ibcinu=1, ipc=0.
Then restart with preconditioning turned on
icdup=0, nstg=2, avisc2=1, avisc4=1, cfl=2.5, eps=1.5, ibcinu=1, ipc=1, refmr=.15, pck=.30.
The AUSM+ scheme should work well at low speeds, but | don’t have much experience with it. Try
icdup=1, nstg=2, cfl=2.5, eps=1.5, ibcinu=1, ipc=1, refmr=.15, pck=.30, ausmk=0.3.
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Swift Input

Namelist input is used for most variables. Many variables have defaults assigned and can be defaulted (not input.)
Defaults are given in angle brackets, <Default=value> or <default.> If no default is given the value MUST be input.

Title

ititle

An aphanumeric string of 80 characters or less printed to the output. The character string must be enclosed
in single quotes.

&nam2 - Algorithm Parameters

nstg

ndis

icdup

cfl

aviscl

avisc2

aviscd

irs

eps

epi, epj, epk

itmax

ivdt

Number of stages for the Runge-Kutta scheme, usualy 4, but can be 2-5. <default = 4>

Number of evaluations of artificial viscosity per stage. More than one evaluation usually improves robust-
ness but increases CPU time. <default = 1>

ndis > 1 gives 2 evaluations at stages 1 and 2 for nstg = 4
ndis > 1 gives 3 evaluations at stages 1, 3, and 5for nstg = 5
Flag for the type of differencing scheme.

=0 Central-difference schemes, requires avisc2and avisc4 <default>

=1 AUSM™ scheme, requires ausmkrefmrand/or refms

=2 H-CUSP scheme, requires hcuspkrefmrand/or refms

Courant number, typically 5.6 (see Multistage Runge-Kutta Scheme, pp. 4.) If ivtstp = 0, cfl is the maxi-

mum Courant number, usually located somewhere near the leading edge at the blade surface. If ivtstp = 1,
the Courant number will equa cfl everywhere. <default = 5.0>

First-order artificial dissipation coefficient. Not recommended, but can sometimes be used to stabilize a
solution that blows up at startup. Set aviscl = 1. for thefirst 50 or so iterations if necessary, but be sure to

set aviscl = 0. assoon asthe solution isrunning stably. (see “Artificial Viscosity”, pp. 4.) <default = 0.0>

Second-order artificial dissipation coefficient. Typically 0. - 2. Use 0. for purely subsonic flow or 1. for
flows with shocks. <default = 0.5>

Fourth-order artificial dissipation coefficient. Typically 0.25 - 1.5. Start at 1.0 and reduce avisc4to 0.5 if
possible. <default = 0.5>

Implicit residual smoothing flag. Usually = 1. (See Implicit Residual Smoothing, pp. 5.)

=0 Noresidua smoothing.

=1 Implicit smoothing after every Runge-Kutta stage <default.>

=2 Implicit smoothing after every other stage. epsmust be increased for this option to work. Rarely used.

Overall implicit smoothing coefficient based on the 1-D stability limit (see “Implicit Residual Smoothing”,
pp. 5) Swift will calculate the 1-D limit if epsis defaulted.

Implicit smoothing coefficient multipliers for the i, j, and k directions. (see “Implicit Residual Smoothing”,
pp. 5) Rarely used. <default = 1.>

Number of iterations, typically 50-1000 per run, but 1000-3000 may be needed for a converged solution.
Variable time step flag.
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ipc

refms, refmr

pck

hcuspk

ausmk

=0 Spatialy constant time step.

=1 Spatialy variable time step. <default, highly recommended>
Preconditioning flag, (see Preconditioning, pp. 5.)

=0 No preconditioning. <default>

=1 Preconditioning using the Merkel, Choi, Turkel scheme. Should give a substantial speedup for Mach
numbers < 0.3.>

=2 Solvesthe eguations using the preconditioning variable set, but sets the preconditioning matrix to the
identity matrix. Used to debug the preconditioning routines.

Reference relative Mach numbers M’ used for preconditioning, and the H-CUSP and AUSM™ schemes.

Refms is an absolute Mach number used for stators and refnr is a relative Mach number used for rotors.
Should be approximately the largest Mach number expected in the flow. If the code blows up, try increasing
refmby 0.1.

Constant used to scale M', for preconditioning (Turkel’s parameter k.) The denominator in the precondi-

tioning matrix is limited to be > pck x (M 'ref)2 . Typically 0.1 - 0.3. Smaller values may improve conver-
gence, but larger values may be necessary for stability. <default = 0.15>

Constant used to scale M', 4 for the H-CUSP scheme. In the H-CUSP scheme the low-speed dissipation is

scaled by max(M’, hcuspk x M', () , i.€., hcuspk sets the minimum value of dissipation. Typical values are

0.05 - 0.10. Smaller values may cause wiggles in the solution. Larger values may improve convergence but
will increase predicted |osses. <default = 0.05>

Constant used to scaleM’  for the AUSM™* scheme. In the AUSM* scheme the numerical speed of sound is
used to calcul ate the pressure fluxes and the pressure diffusion term. The numerical speed of sound isafunc-
tion of a reference Mach number, Mg = min[1, max(M'2, ausmk x M'2,)] , so ausmk also controls the

dissipation of the scheme, but in aless obvious way than hcuspk. Typical values are 0.3 —0.8. Larger values
seem to be needed for convergence, but don’t seem to hurt accuracy. <default = 0.8>

&nam3 - Boundary Condition & Code Control
Note: In the following discussion, for linear geometries (igeom=0,) (V,,, Vg, V,) should be interpreted as (u, v, w) .

Inlet boundary
At the inlet boundary Py and T, are held constant. For subsonic flow a Riemann invariant based on v

is extrapolated

m

from the interior. Previous versions of Swift held vy constant and used a single flag, ibcin, to determine how v, was calcu-
lated. Ibcin is retained for compatibility. If ibcin is defaulted, two flags, ibcinv and ibcinw, determine how v and v, are deter-
mined. Properties that are held constant are either generated from the initial condition datain the input file or are read directly

from agin-file.

ibcinu

ibcinv

Inlet boundary condition flag for v, .

= 1 Extrapolate the Riemann invariant to the inlet. Used for most problems. <default>

= 2 Extrapolate v,,, to the inlet. Recommended for low speed flows, especially with preconditioning.
Inlet boundary condition flag for vy .

=1 vy isheld constant. <default>
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=2 Vg/V, = tana isheld constant.
ibcinw Inlet boundary condition flag for w v, .
=1 v, isheld constant. <default>
=2 V,/V, = tang isheld constant.
=3 vV, isheldtangent to the meridiona grid lines at the inlet. <default>

ibcin Old inlet boundary condition flag, still supported. For all options vy is held constant.

=0 or defaulted: ibcinv and ibcinw are used to set the options as described above.

=1 v, isheldtangent to the meridiona grid lines at the inlet. <default>

=2 Supersonic meridional inflow - al quantities are held constant. (Rarely used except for the NASA
supersonic throughflow fan project.)

=3 V,/V, = tan isheld constant.

=4 v, isheld constant. <default>

Exit Boundary

Four primitive variables are extrapolated to the exit. The input parameter prat gives the exit pressure. The parameter ipex
determines where prat is specified and determines how the spanwise pressure distribution is calculated.

ibcex Exit boundary condition flag.

=1 Pratisspecified asaconstant. Only applicable to linear geometries, or annular geometries with radial
outflow.

=2 Supersonic meridional outflow. P is extrapolated to the boundary. Prat is not used. (Rarely used
except for the NASA supersonic throughflow fan project.)

=3 Pratisspecified at the exit. The spanwise variation of p isfound by solving radial equilibrium. p is
constant blade-to-blade. <default>

=4 Pratisspecified at the exit hub or tip. The spanwise variation of p isfound by solving radia equilib-
rium. P isfound as a perturbation about p using a characteristic boundary condition developed by Giles.

ipex Flag that tellswhere prat is specified. This can have a significant effect on the stability range of compressors.
For hub-critical machines ipex should be set to 0 to hold the hub pressure constant. For tip-critical machines
ipex should be set to 1 to hold the tip pressure constant.

If igeom= 0, prat is held constant over the exit.

=0 Pratisspecified at the hub <default.>

=-1 Pratisspecified at thetip.

=1 Exit pex-fileisread from unit 14. (see “Inlet and Exit Profiles’, pp. 16)

Inlet and Exit Profiles

Inlet profilesof Py, vg, v, and T, and exit profiles of pg,,, can be specified as boundary conditions for Swift. For conve-
nience, a common file format is used for both inlet and exit (see “Inlet and Exit Profiles’, pp. 27.) The profiles are input as
ASCII files containing six variables, P, v,, Vg, V,, T, and pg, . at severa spanwise locations. Only the variables needed at a

16



particular boundary are used, and the other variables are ignored. The profiles are interpolated linearly to the span of the actual
grid, and should resolve the endwall boundary layers.

Inlet and exit profile files for the current solution can be written by setting variable ispan=1. The output file, written to
unit 15, can be edited to extract inlet or exit profiles that can used for subsequent calculations. In this way a multistage
machine can be modeled one row at atime by using the exit profile from one blade row as the inlet profile to the next.

It may also be useful to modify output profiles manually, for example by replacing core flow quantities at a few points
while retaining boundary layer properties.

ispan

igin

ipex

Code Control

isymt

kbcor

ires

iresti

iresto

newkw

kwvars

Flag for writing spanwise profiles to unit 15.

=0 No output generated. <default>

=1 Spanwise profile output written to unit 15.
Flag for reading inlet profile.

=0 Inlet conditions are calculated by subroutine gincalc based on the initial condition data, boundary
layer thicknesses, etc. in the input file. Current input values are used, so the inlet profiles can be changed at
restart if desired. <default>

=1 Inlet gin-fileread from unit 13. Used to read an exit profile from a solution of an upstream blade row.
Flag for reading exit pressure profile, also used to set location of prat. (see “Exit Boundary”, pp. 16)
=1 Exit pex-fileisread from unit 14.

Top-plane symmetry flag. Used to model the bottom half of alinear cascade with bottom-to-top symmetry.
=1 Symmetry condition on k = km.
else Solid wall boundary condition on k = km. <default>

Obsolete flag for order of accuracy used in endwall boundary conditions. Still read for compatibility with
old input files, but not used.

Iteration increment for writing residuals in the output file. Typicaly 10. If the code is blowing up, set
ires = 1 to print the size and location of the maximum residual at each iteration.

Flag for reading input restart file. Restart files are in PLOT3D format.
=1 Read restart file from unit 2.

else  No action taken. <default>

Flag for writing output restart file.

=1 Writerestart file to unit 3. <default>

else  No action taken.

Flag for running the k-w turbulence model from scratch using an unchanging solution. Useful for starting a
new k- solution from an old Baldwin-Lomax solution.

=0 Run k-0 model and flow solver. <default>
=1 Runk-cwymodel frominitial guess for itmax cycles. Write k-w file to unit 8 and stop.

Number of variablesto store in the k-w file. (See Turbulence Model k-w File, pp. 27.)

=3 Stores3variables [L,,, k, w] . Saves storage but not PLOT3D compatible.
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iopen

=5 Stores 5 variables [, K, w, Re;, W4, - INCreases storage but the k-w file is PLOT3D compatible.
<default = 5>

Flag for opening output files explicitly by name.

= 0 Output files are written to Fortran units without explicitly opening them. <default.>
= 1 Output files are opened by name:

grid.xyz =main grid file (binary)

index.dat= Swift index file (ASCII)

qin.gq

&nam4 - Flow Parameters

igeom

ga

om

prat

expt

Flag for linear cascade or annular blade row.
=0 Linear cascade.

=1 Annular blade row <default.>

Ratio of specific heatsy. <1.4 for air>

Normalized blade row rotational speed, Q/ ¢, , where Q isthe wheel speed in radians per second, and ¢, has

dimensions of [grid units/sec], giving om dimensions of [1/grid units]. The (x,y,z) coordinate system must be
right-handed. L ooking in the positive x-direction, clockwise rotation is negative and counterclockwise rota-
tionis positive. Q is negative for most Glenn geometries. <default = 0.>

Ratio of the exit static pressure to the reference total pressure, prat = pg,;/Po, -
Exponent used to specify the inlet whirl distribution. Mg = M_e(r/rmid)expt where M_e is the mid-span
value of Mg determined from the initial condition input.

=0 Givesuniform My except within the endwall boundary layer. <default>

=-1 Givesfreevortex inflow.

=1 Givesforced vortex inflow.

&namb - Viscous Parameters

ilt

Inviscid, Laminar, or Turbulent analysis.

=0 Inviscid. Most other viscous parameters are not used if ilt=0.

=1 Laminar.

=2  Turbulent using the Baldwin-Lomax turbulence model. <default>

=3 Turbulent using the Cebeci-Smith turbulence model. This model works well for turbine heat transfer
but may overpredict losses for transonic compressors.

=4  Fully turbulent using the Wilcox baseline k-w turbulence model.

=5 Turbulent with transition using the Wilcox low Reynolds number k-w turbulence model. Note that
“low Reynolds number model” refers to modifications made to give reasonable calculations of flat plate tran-
sition, and not to near-wall modifications needed by k-& models.
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itur

renr

pror

tw

vispwr

prtr

cmutm

jedge

kedgh, ledgt

iltin

dblh, dblt

xrle, xrte

The turbulencemodelis updatedevery itur iterations.Recommendedaluesareitur=>5 for the Baldwin-
Lomax or Cebeci-Smith models, and itur=2 for the k-w model. If the k-w model blows up quickly it may
help to usetur=1 for the first 100-200 iterations. <deft=5>

Reynolds numberper unit lengthbasedon referenceconditions,renr = p,,c,,/ Hp, - Must have units of

[1/grid unity . Generallymuchlargerthata cornventional‘free-stream”Reynoldsnumber For example for
standard conditions:

- ljme ft O —5|]|bm 0
renr = 0.0765%1—3%X 1116'%’5—6&(1'285(10 Fsed]

= 6.65¢10°/ft

Prandtl number<defwult = 0.7 for air>

Normalized vall temperaturetw = T, .,/ Tg.

=0 Adiabatic vall boundary conditions are used.

=1 T = T, <dehult>

wall

else T = tw.

wall

Exponent for laminar viscosity power law. <default = 0.667 for air>Visgevr=0.0 for water.

Vispwr

W Hg = (T/Tg,)

Turbulent Prandtl number. <deflt = 0.9>

Valueof W,/ Ham atwhich transitionis assumedo occur Baldwin and LomaxrecommendL4. Canbe

increased to move transition downstream or vice-versa. If cmutm = 0, the flow is fully turbulent. <default =
14.>

j-index wherethe artificial viscositybeginsto rampoff nearthe blade.Also thelastj-index searchedor the
bladeturbulentlengthscale For the Baldwin-Lomaxturbulencemodel (ilt = 2) , jedge shouldbeagrid line
slightly bigger than the largest expected blade boundary layer. For the Cebeci-Smith turbulence model
(ilt = 3), jedge should be a grid line slightly bigger than half the largest expected blade boundary layer.
<default = 10>

k-indiceswhere the artificial viscosity begins to ramp off nearthe hub and tip. Also the last k-indices
searched for the hub and tip tulknt length scales. See commentgédge. <defwult = 10>

Flag controlling inlet elocity and B profiles.

=0 Inviscid.

=1 Laminat

=2 Turbulent using Cole's all-wake profile. <dedult>
Inlet hub and tip boundary layer thicknesses in grid units.

Axial locationsat which the hub startsandstopsrotating.Rotationalboundaryconditionsareappliedon the
hubfor xrle< x < xrte. Stationaryconditionsareappliedelsavhere.Notethatxrle andxrte maynotbesuf-

ficient to locate the rotating part of the hub in aradial flow machine.Defaults are set to make the entire hub
rotate.
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irle, irte

tintens

tlength

hrough

i-indicesat which the hub startsand stopsrotating.In radial flow machinesxrle andxrte may not be suffi-
cient to locate the rotating part of the hub, so irle and irte can be used instead. This option only works cor-
rectly for asingleblock H-grid, andeventhenthegrid linesmaynot be straight.Defaultsaresetto make the
entire hub rotate.

Free-streanturbulenceintensity written asa decimal.Usedto getthe inlet value of k for the k-w model.
<default=0.01, i.e., one percent.>

Free-streamturbulence length scale. Used to get the inlet value of w for the k-w model. Typically
tlength=0.03x boundary layer heigl or tlength=0.001x pitch. The free-stream turbulent viscosity
Uy, is derived from tintens and tlength, and is printed near the top of the output. Generally

My, Should be< 0.1 to minimize the décts oftlength.

Surfaceroughnesseightin grid units. In the Baldwin-Lomaxand Cebeci-Smithturbulencemodels(ilt = 2
or 3 respectrely) surfaceroughnesss modeledusingthe Cebeci-Changoughnessnodel.In the k-« mod-
els (ilt = 4 or 5) surface roughness is modeled using Wilcox's wall boundary condition for w. In any case
hrough represents some equivalent sand grain roughness height, which is a factor of 2—4 times the RMS
height. Smooth suates are modeled by settingugh = 0. <defult = 0.>

Note: Previousversionsof Swift input hrough in turbulentwall units (h+). In Swift version300the actual
height is used. Ihrough >4 Swift assumes old inputas used and resdisough to zero.

&nam6 - Output Control

oar

mioe

iqav

Flagfor frameof referenceof outputg-file. Swift automaticallydetectghe frameof referenceof arestartg-
file and comerts it to the absolute frame for internal use if necessary

=0. All blade rans are in the absolute frame of reference.
=1. All blade rawvs are in the relate frame of reference. <deflt>

Flagfor outputformatof massflow in residualhistory For transonicfansthe inflow mayrespondslowly to
achangen backpressuresotheinlet massflow canbe monitoredfor corvergence For turbinestheinflow
maychoke quickly sotheoutflow canbemonitored.In generathemasdslow erroris agoodmeasuref con-
vergence and accura@and should corerge to a fraction of a percent (e. g., < 0.003).

=1 Inlet mass flar history is written.

=2 Exit mass flov history is written.

=3 Mass flav error1—m, /m,, is written. <defult>

=4 Eliminatesthe maximumresidualwhich alwayslookslike the RMS residualaryway) andprints m;

andm, . instead. Calculate the massaflerror yourself with EXCEL if desired.

Flag controlling type oB-averaging used in the output.

=0 Enegy average. Masswerage of p, V2, and T]. Usually the most optimistiverage.<defult>
=1 Momentum aerage. Masswerage of p, pV, and e], &irly conserative.

=2 Mixed-outaverage.Formal averageof inviscid fluxes gives propertiesfar downstream Usually the
most consemtive average.

=3 Total pressureaverage.Corverts Py to an equivalent To, massaveragesthen corverts back. Often
done with &perimental data. Usually similar to the emeaverage.
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nko Number of k-indices for blade surface output, max = 10. <default = 0>
ko Array of nko k-indices separated by commas where blade surface output is desired. <default = 0>

iog Grid block number where spanwise output is desired. Spanwise output is normally printed at the inlet and
exit of each blade grid. Sometimesit is useful to have output from other cross-channel planes, say near the
trailing edge. This output can be generated for a single grid block by specifying the block number iog and
the desired i-indicesio. <default = 1>

io Array of up to 10 i-indices where spanwise output is desired. For H-grids output is printed at each i index.
For C-gridsthei-index and its periodic neighbor are merged. <default = 0>

ismout Flag for distance coordinate s used in blade surface output.
=0 S=arclength around blade. <default>
else  S=meridiona distance along blade.
ileout Flag for location of leading edge (s=0) used in blade surface output.
=0 S=0ati=imax/2index. <default>
else S=0at smax/2.

Note: For H-grids, S=0ati =ile.

Initial Condition Input

Immediately following the namelist input comes nrow+ 2 lines of data used for the initial guess and the inlet boundary
conditions. Nrow is the number of blade rows and is determined within Swift by counting the number of lines of input.

Thefirst lineisignored and can be used for column labels. Subsequent lines give row number and nominal flow conditions
at mid-span. Unformatted reads are used, so all variables must be input.

A sampleinitial condition input for a seven-block grid is shown in figure 5. A portion of the input is repeated bel ow.

row PO WK M M TO

0 1. 0000 . 1330 -. 0000 0. 1. 0000

1 . 9938 . 1692 -. 3986 0. 1. 0000
etc.

The variables are as follows:

row Integer blade row number. Row number 0 is the inlet. Subsequent row numbers represent the exits of each
blade row.

PO Meanline P/ Py, .

Mx Meanline Mach number in the x-direction.

Mt Meanline Mach number in the 6- or y-direction.

Mr Meanline Mach number in the r- or z-direction.

TO Meanline T/ T, .
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Index File

The index fileisan ASCII file that gives the grid sizes, connectivity, and certain boundary condition information for each
grid. It replaces namelist block &nl1in RVC3D.

Thefirst lineisignored and can be used for column labels. Subsequent lines give grid type, dimensions, key indices (like
itl and iil in RVC3D), connecting grid numbers, blade row number, and relative rotational rate for each grid. Negative values
are sometimes used to toggle boundary condition options. Onelineisrequired for each grid. Unformatted reads are used, so all
variables must be input.

For an isolated blade row, TCGRID will produce a complete index file written to unit 10. It may be necessary to modify
nhub or ntip if the simple periodicity clearance model isto be used, or to modify the rotation multipliers om, omh, or ont.

For multistage calculations the grids for each blade row are generated separately, and merged using the utility code MUL -
TIX. The separate index files must be merged manually using the unix cat command or an editor. Extraneous header lines must
be removed, and connectivity information must be added manually.

A sampleindex file for a seven-block grid is shown in figure 5. A portion of the file is repeated below.

grid type im jm km il i 2 i3 nin nex nhub ntip nlr row om omh
o 1 1 17 17 57 0 0 0 999 2 0 0O 0 1 0. 0. o
2 2 127 37 57 14 57 0 1 -3 0 0 0 1 0. 0. O.
etc.

Index File Variables
grid Grid (block) number, from 1 to number of grids
type Flag giving type of grid.

=1 H grid for upstream

=2 C grid for blades

=3 O grid for hub or tip clearances
im Number of grid pointsin i-direction.
jm Number of grid pointsin j-direction.
km Number of grid pointsin k-direction.
i1 (C-grid) Lower i-index of trailing edge. Upper index is assumed to be periodic.
i1l (H-grid) Leading-edge index of an H-grid, or flag for the type of H-grid geometry. Note: Swift.300 supportsinlet H-

grids ahead of C-grids, H-grids in blade passages, and H-grids in rectangular ducts.
=0-Thisisan inlet H-grid ahead of a C-grid
=1-Thisisan H-grid in arectangular duct

> 1 —i-index of the leading edge for an H-grid around a blade

i2 (C-grid) Lower i-index of inlet (or last periodic point.) Upper index is assumed to be periodic.
i2 (H-grid) i-index of the trailing edge for an H-grid around a blade

i3 Unused, set to 0.

nin Inlet boundary condition flag.

= 999: C- or H-grid with conventional inlet boundary condition.
>0: C-grid inlet patched to upstream H-grid number nin.

<0 C-grid inlet mixed-out from upstream C-grid number nin
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nex

nhub

ntip

nlr

row

om(n)

omh

omt

Exit boundary condition flag.

=999 C-grid with conventional exit boundary condition.

>0: H-grid exit patched to downstream C-grid number nex.
<0: C-grid exit mixed out to downstream C-grid number nex.

Flag for hub clearance. Note: In Swift.300 hub and tip clearances can be modeled simultaneously.

>0: Connecting grid block number for gridded hub clearance.
=0 No hub clearance.
<0 Simple periodicity hub clearance model between k=1 and k=|nhub].

Flag for tip clearance. Note: In Swift.300 hub and tip clearances can be model ed simultaneously.

>0: Connecting grid block number for gridded tip clearance.

=0 No tip clearance.

<0 Simple periodicity tip clearance model between k=|ntip| and k=km.
Unused, set to 0.

Integer blade row number between 1 and the number of rows. Corresponds to row number in initial condi-
tion input.

Rotation multiplier. The rotational speed for thisgrid is om x om(n) . Usually 0.0 for stators, 1.0 for rotors,
or -1.0 for counterrotating rotors. (See &namb - Viscous Parameters, pp. 18 for definition of normalized
blade row rotational speed om.)

Hub rotation multiplier. Rotational speed for k=1 on this grid is om x omh. Usually 1.0 for rotating hubs.
Overridden by variables xrle and xrte, the axial locations at which the hub starts and stops rotating (see
“&nam> - Viscous Parameters’, pp. 18.)

Tip rotation multiplier. Rotational speed for k=km on this grid is omx omt. Usualy 0.0 for stationary
shrouds or 1.0 for rotating shrouds.
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Swift Output

Printed output from Swift is written to Fortran unit 6 (standard output.) The output is divided into several sections. The
sections may be separated using an editor and plotted using any x-y plotting package that can read ASCII column data.

1. Theinput variables are echoed back for reference, and any comments or warnings regarding the input are given.

2. Spanwise profiles of 6 —averaged flow variables are given at the inlet or exit. These variables are either based on the
initial guess or on arestart file, depending on how the code is started. Theinitia profiles are often useful for identifying
grid lines near endwall boundary layers.

3. A convergence history gives maximum and RM S residuals of density, and exit flow properties versus iteration.

4. Spanwise profiles of 8 —averaged flow variables are repeated at the inlet and exit for the new solution. Four different
averaging schemes are available for computing these profiles. Note that all quantities are evaluated locally, except for
the columns labeled “PO loss” (for stators) or “ad.eff” (for rotors.) These quantities are cal culated between the grid inlet
and grid exit of each blade row. .

5. Blade surface profiles of various quantities are given on selected k grid lines (spanwise locations.) Values of y for the
first grid point are given for checking turbulent grid spacing, and maximum values of | are given to identify transition
points.
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Test Cases

Each test caseis stored in a separate directory. Files named *.int are the TCGRID input files. Files named *.ind are Swift
index files. Files named * .jcl are unix script filesfor linking files and running Swift. These files also contain the input data, and
may contain comments about how to run the case. Files named *.ins are the raw Swift input if you need to run manualy. Files
named *.out are the my output files for the case. In some cases | have included the experimental data shown in the plots. This
should be self explanatory.

Goldman Turbine Vane

The first test case is for an annular turbine vane tested by Goldman at NASA Glenn Research Center. Computed results
were presented previously in references 2, 4, and 13. Current results are shown in figure 6.

The grid is shown at the top left of the figure. The grid size was 97 x 32 x 33, for atotal of 102,432 points. The grid size
isintentionally coarse is to make the test case run quickly, but the results are till very good.

Solutions were run using the C-D, H-CUSP, and AUSM™* schemes and the Baldwin-Lomax turbulence model. The stan-
dard four-stage Runge-Kutta scheme was used with cfl=5.6. The calculations were run 1500 iterations. On an 300 MHz SGI
Octane, the C-D solution took about 30 minutes, the H-CUSP solution took about 32 minutes, and the AUSM+ solution took
about 45 minutes.

Convergence histories for the C-D solution are shown at the bottom left. The other schemes behave similarly. Exit total
pressure converges to three significant digits in about 1000 iterations, and mass flow error 1—rm, /M, converges to about
0.001.

Mach contours at midspan are shown at the top right. The flow is entirely subsonic. The thin boundary layers and wake are
evident.

Comparisons with experimentally-measured exit profiles are shown at the bottom right. For total pressure loss, the C-D
results show little detail along the span. The H-CUSP results show some detail near the tip but too much loss near the hub. The
AUSM™ results show good qualitative agreement with the data along the entire span. All results show higher losses than the
data at midspan. The midspan loss does not improve with increasing grid resolution, and may be due to poor modeling of the
round trailing edge. For flow angle, the C-D results show nearly uniform flow angle along the span, and the H-CUSP results
are only slightly better. The AUSM™ results show excellent agreement with the data along the entire span.

out

NASA Rotor 67

The second test case is for a low aspect ratio transonic fan denoted NASA rotor 67 that was also tested at NASA Glenn
Research Center. Solutions were computed with three different grids: a C-grid, an H-grid, and a multiblock H-C-O grid that
resolved the tip clearance. All grids had the same wall spacings and spanwise distributions. All results were computed using
the central-difference scheme, but different clearance and turbulence models were used. Computed results have been presented
previoudly in ref. 3. Current results are shown in figure 7.

Multi-block Grid

Multi-block cal culations were made using athree-block grid that resolved the tip clearance, as shown at the top left of fig-
ure 7. The upstream H-grid had 25 x 19 x 49 points, the C-grid around the blade had 187 x 37 x 49 points, and the O-grid in
thetip clearanceregion had 147 x 11 x 7 points, for atotal of 373,625 points. Theinlet boundary was approximately one axial
chord upstream of the leading edge. The Baldwin-Lomax turbulence model was used for these calculations. The calculations
were run 1500 iterations on an SGI Origin 2000 system with 6 processors. The wallclock time was about 1.1 hours.

C-grid

Single-block calculations were made using the same C-grid that was used for the multi-block calculations. The grid size
was 339,031 points. Theinlet boundary was approximately 0.23 axial chords upstream of the leading edge. The simple period-
icity tip clearance model and the k-w turbulence model were used. The cal culations were run 1500 iterations on an SGI Origin
2000 system with 6 processors. The wallclock time was about 1.25 hours because of the k-« model.

H-grid

Single-block calculations were also made using an H-grid with 151 x 54 x 49 = 399, 546 points. H-grids need fewer
i-direction points than C-grids, but need more j-direction points to resolve the blade boundary layers. Here the inlet boundary
was approximately 0.76 axial chords upstream of the leading edge. The simple periodicity tip clearance model and the k- tur-
bulence model were also used here. The calculations were run 1500 iterations on an SGI Origin 2000 system with 8 proces-
sors. The wallclock time was about 1.6 hours.
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Convergence histories are shown at the bottom left. The three grids converge quite differently, but in each case inlet mass
flow and exit total pressure converge to three significant digits in about 1000 iterations.

The pressure ratio prat was chosen to give an operating point near peak efficiency. Mach contours at 90 percent span are
shown at the top right. The bow shock system and passage shock can be seen.

Comparisons with experimentally-measured exit profiles are shown at the bottom right. All exit profilesare in good agree-
ment with the experimental data. The results are nearly independent of the grid topology, but do depend on the turbulence
model. The Baldwin-Lomax model (3-block grid) predicts somewhat higher pressure ratios and efficiencies than the k-w
model (C- and H-grids.) The k-w SST may give better results for this problem.

Large Low Speed Centrifugal Compressor

The third test cast is for the large low speed centrifugal impeller tested at NASA GRC by Hathaway, et. a. The origina
calculations were shown in reference 7. Current results are shown in figure 8. The current results used an H-grid with
127 x 48 x 41 = 249, 936 points, shown at the top left. The simple periodicity tip clearance model and Baldwin-Lomax tur-
bulence model were used.

The solution was run with the standard C-D scheme for 100 iterations to get the solution started. Then preconditioning
was turned on since the flow is relatively low speed. Convergence histories shown at the bottom left show that the pressure
ratio and mass flow error were roughly converged in 2500 iterations. The total wallclock time was about 1.1 hours on an SGI
SGI Origin 2000 system with 6 processors.

Computed surface pressure contours are shown at the top right. A comparison of computed and measured blade pressures
at mid span is shown at the bottom right. The experimental results were measured at a flow rate of 66.14 Ib/sec, but the com-
puted mass flow was 70.0 Ib/sec. Increasing the exit pressure prat will decrease the computed flow rate and should improve the
agreement with the data. The discrepancy on the pressure side near the trailing edge was noted in ref. 7 and is still unexplained.

Single Stage Turbine

The last test case is for a two-stage turbine tested by Dunn, et. all. The original calculations were shown in reference 8.
The current results were done for the first stage only and are shown in figure 9. A three-block grid similar to the one shown in
figure 5 was used. The stator grid had 127 x 37 x 45 = 211, 455 points. The rotor grid had 127 x 33 x 45 = 188, 595
points. And the rotor clearance grid had 95 x 13 x 11 = 13, 585 points, for atotal of 413,635 points.

For this test case the stator and rotor grids are generated separated, and linked with a utility named multix. The source
code multix.f isincluded. The file run_multix.exe is a unix script that will do almost everything for you. It is liberally com-
mented if you want to do this manually. Thefile out.ind is the preliminary index file generated by multix. The file stgl.ind has
been manually edited to add grid connectivity, inlet and exit flags, hub and tip rotation multipliers, etc. Notice the differences
between the two *.ind files to see what you may need to add for other multistage calculations.

The solution was run 2000 iterations from scratch with preconditioning turned on. The wall temperature ratio was set to
0.7 so that heat transfer calculations could be made. The Cebeci-Smith turbulence model was used. Convergence histories at
the bottom left of the figure show that pressure ratio converged quickly and mass flow error converged more slowly, but both
look good after 2000 iterations.

Computed surface pressures are shown at the top left. A comparison of computed and measured pressures on the stator at
mid span is shown at the top right. The agreement is very good.

Comparisons of computed and measured Stanton numbers (heat transfer coefficients) are shown at the bottom right. Com-
puted Stanton numbers are somewhat high for the stator, but are in very good agreement with the data for the rotor.
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File Descriptions

Grid XYZ-File
Grids are stored using standard PLOT 3D xyz-file format. Grids can be read with the following Fortran code:

c read grid coordinates
read(1l)imjmkm
read(1) (((x(i,j,k),i=1,im,j=1,jm, k=1, km,
& (CCy(i,j, k), i=1,im,j=1,jm, k=1, km,
& (((z(i,j,k),i=1,im,j=1,jm, k=1, km
Solution Q-File

Solution files are stored in standard PLOT 3D g-file format. Solution files can be read with the following Fortran code:

c read g-file
read(2)imjmkm
read(2)em nf, al deg, renr, tine

read(2) ((((qq(l,i,j,k),i=1,im,j=1,jm,k=1,km,I=1,5)
c addi ti onal geonetry data and residual history
read(2)itl,iil, phdeg, ga,omnres,igeom dum dum dum

read(2) ((resd(n,l),n=1,nres), | =1,5)

The g-variables are:

q = [Jz_ pu__pv _pw _e }
Por’ PorCor PorCor PorCor PorCa

e= pB’:VT + %(u2 +V +w2)g

If oar=1 therelative velocity componentsare stored, v' = v—Qz, w' = w+ Qz.

Turbulence Model k File

Restart files for the k-w turbulence model are stored in standard PLOT 3D g-file format. Solution files can be read with the
following Fortran code:

c read tmu, k, w
read(7)imjmkm
read(7)dum
read(7) ((((tkw(l,i,j,k),i=1,im,j=1,jm, k=1, km,I|=1, kwars)
The tkw-variables are:

| Hwr ko Mam
tkW - I 7! C_y ’ Retur
Hor ¢ Cor Mor

Note that the laminar viscosity |, ,,, and the turbulence Reynolds number Re;,r are not used by Swift. They are written
to pad thefile for PLOT3D compatibility if kwvars=5. Thisresultsin larger file sizes than necessary. Smaller files may be gen-
erated by setting kwvars=3, but the files cannot be read by PLOT3D.

Inlet and Exit Profiles

Inlet profilesof P, vg, v, and T, and exit profiles of pg;,, can be specified as boundary conditions for Swift. For conve-
nience, a common file format is used for both inlet and exit. The profiles are input as ASCI| files containing six variables,
Py Vi Vo Vi T @nd g o, @t several spanwise locations. Only the variables needed at a particular boundary are used, and the
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other variables are ignored. The profiles are interpolated linearly to the span of the actual grid, and should resolve any desired

endwall boundary layers.
A sample profile file can be generated by setting variable ispan=1. The output written to unit 15 may be edited manually
to extract the desired profile. The format is as follows:

&ospan irow = 0 kin = 95 flow = 119. 25082 &end

k s/ span PO/ POI vx/ cO vt h/ cO vr/cO TO/ TOi ps/ POi
1 0. 00000 1.12907 0. 00000 -0.65789 0. 00000 1. 06326 0. 83876
2 0. 00019 0.90181 -0.07050 -0.31211 -0.01668 1. 00000 0. 83864
etc.

Thefirst lineis namelist input. Only kinis required.
kin Number of spanwise points.

irow Dummy variable not used by Swift, but useful for identifying the desired profile from an output file. Irow
gives the relative location of the profile, where irow=0 is the inlet, irow=1 is the exit of the first blade row,
irow=2 isthe exit of the second blade row, etc.

flow Dummy variable not used by Swift. Flow is the non-dimensional mass flow and is included for use by the
CSTALL code now under development.

The second line has titles for convenience but is not read. The remaining kin lines have the following variables:

k Spanwise index, not used.

s/span Normalized spanwise distance, between 0.0 at the hub to 1.0 at the tip.
PO/POi Normalized total pressure, used for inlet profiles only.

vx/c0 Normalized axial velocity, not used.

vth/cO Normalized tangential velocity, used for inlet profiles only.

vr/cO Normalized radial velocity, used for inlet profiles only.

ps/pOi Normalized static pressure, used for exit profiles only.
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Figure 1 — 3-D coordinate system and grid indexing system

Figure 2 — Indexing system for a C-grid and an upstream H-grid
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Figure 4 — Three-block grid for a turbine stage showing overlap regions and dummy grid lines



Seven-block grid for a two-stage turbine with rotor tip clearances.

Block 4 Block 7
Rotor 2 tip

O-grid

Rotor 1 tip
O-grid

Block 2 Block 3 Block 5 Block 6
Stator 1 Rotor 1 Stator 2 Rotor 2
C-grid C-grid C-grid

Block 1
Inlet
H-grid

Block diagram of a seven block grid..

grid type im jm km i1l i 2 i3 nin nex nhub ntip nlr row om omh ont
1 1 17 17 57 0 0 0 999 2 0 0 0 1 0. 0. O
2 2 127 37 57 14 57 0 1 -3 0 0 0 1 0. 0. O
3 2 127 33 57 17 57 45 -2 -5 0 4 0 2 1. 1. O.
4 3 95 13 13 0 0 45 0 0 0 3 0 2 1. 1. O.
5 2 127 37 57 14 55 0 -3 -6 0 0 0 3 0. 0. O
6 2 141 33 57 21 64 45 -5 999 0 7 0O 4 1. 1. O.
7 3 101 13 13 0 0 45 0 0 0 6 0O 4 1. 1. O.
Index file

row PO VK M \%g TO

0 1. 0000 . 1330 -. 0000 0. 1. 0000

1 . 9938 . 1692 -.3986 0. 1. 0000

2 . 8210 . 1984 . 0802 0. . 9518

3 . 8112 . 1858 -. 4175 0. . 9518

4 . 7964 . 3693 . 0852 0. . 9059

Initial condition data.

Figure 5 — Grid, block diagram, index file, and initial condition data for a two-stage turbine with rotor tip clearances.
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Figure 6 — Goldman annular turbine vane test case
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127 x 48 x 41 point H-grid
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Figure 8 — NASA large low-speed centrifugal

impeller test case

35

Computed surface pressure contours

1.10

1.05

1.00

] Comparison
E pressure distribution near mid span

Blade pressures at 49 pecent span
T T T T

1
20 40 60 80 100
Percent meridional distance

of computed and measured blade surface



Computed surface pressure contours
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Figure 9 — Single stage turbine test case
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