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Introduction
Swift is a multiblock computercodefor analysisof three-dimensionalviscousflows in turbomachinery. Thecodesolves

thethin-layerNavier-Stokesequationsusinganexplicit finite-differencetechnique.It canbeusedto analyzelinearcascadesor
annularbladerowswith or without rotation.Threeturbulencemodelsareavailable.Limited multiblockcapabilitycanbeused
to model tip clearance flows and multistage machines.

Swift hasbeentestedon numerousfanandturbinebladesandhasbeenusedheavily at NASA GlennResearchCenterfor
fananalysisanddesign,analysisof turbineendwall heattransfer, andmany otherapplications.Swift is amultiblockversionof
RVC3D, which wasoriginally describedin (2) alongwith calculationsof a blunt fin andanannularturbine.Theflow equa-
tions,numericalmethod,andcalculationsof a transonicfanweregiven in (3). Thealgebraicturbulencemodelsandcalcula-
tionsof turbineendwall heattransferweredescribedin (4), andthek-ω turbulencemodelwasdescribedin two-dimensionsin
(5). Themultiblock codeknown asSwift wasintroducedin (6) alongwith calculationsmadeof tip clearanceflow in a tran-
soniccompressor. The preconditioningschemeandcalculationsof a large low-speedcentrifugal impeller weredescribedin
(7). Multistage capability was describedin (8) along with calculationsof a two-stageturbine. Finally, the AUSM+ and
H-CUSP upwind schemes and SST version of the k-ω model were described in (13.)

This reportservesastheuser’smanualanddocumentationfor Swift. Thecodeandsomeaspectsof thenumericalmethod
aredescribed.Stepsfor codeinstallationandexecutionaregiven for both unix workstationsandWindows PC’s. The grid,
input, and output variables are described in detail.
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Features of Swift
• New in Version 300

AUSM+ & H-CUSP upwind schemes
k-ω SST turbulence model
Surface roughness input as actual height instead of wall units
H-grids for blades or ducts
Simultaneous modeling of hub & tip clearances
Simultaneous output of inlet & exit mass flow
Loss and efficiency calculated across each blade row

Code distributed in tarred format that should compile and run directly on unix machines, or a zipped format that should
compile and run directly on Windows PC’s.
Code converted to Fortran 90
Dynamic memory allocation reduces memory requirements and avoids recompiling for most problems

Note: For inlet H-grids, the dummy grid line at j=1 has been deleted in Swift v.300. Compatible grids can be generated
with TCGRID v.300. Files with inlet H-grids generated with previous versions of TCGRID or Swift are incompatible with
version 300. Please let me know if this creates a serious problem.

• Applications
Linear cascades
Axial compressors and turbines
Isolated blade rows or multistage machines
Centrifugal impellers and mixed-flow machines without splitters
Radial diffusers
Pumps
Rectangular ducts

• Multi-block Capability
C-grids around blades
H-grid upstream
O-grids in hub- or tip-clearance regions (or periodic clearance model)
Mixing-planes between blade rows

• Formulation
Navier-Stokes equations written in Cartesian coordinates with rotation about the x-axis
Thin-layer equations in streamwise direction, all cross-channel viscous terms retained
Second-order finite-difference discretization

• Turbulence Models
Baldwin-Lomax (algebraic)
Cebeci-Smith (algebraic)
Wilcox’s k-ω (two-equation)
Surface roughness effects in all models

• Numerical Method
Explicit multi-stage Runge-Kutta scheme
Variable time-step and implicit residual smoothing for convergence acceleration
Preconditioning for low-speed (incompressible) flows

• Input
General grid files in PLOT3D format, usually generated using TCGRID
Namelist input of flow parameters

• Printed Output
Residual history
Spanwise output of circumferentially-averaged flow quantities at the grid inlet and exit
Streamwise output of blade surface properties
Printed output can be edited manually and plotted with Microsoft Excel or other line plot software

• Computer Requirements
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Runs as a batch process on most unix, linux, or Windows computers
Parallel processing on SGI computers using OpenMP directives
Runs well under linux, has been run under Windows
Solution times range from one to several hours on modern workstations
Written in Fortran 90, requires a Fortran 90 compiler

• Graphical Output
No graphical output is provided with Swift but access to some CFD visualization package is absolutely necessary to view
and evaluate the solutions. Grid and solution files are in standard PLOT3D format and can be read directly and plotted with
public-domain CFD visualization tools PLOT3D and FAST, or the commercial tools EnSight, FIELDVIEW, or TecPlot.
Check the following web sites for more information.

PLOT3D & FAST: http://www.nas.nasa.gov/Research/Software/swdescription.html
TecPlot: http://www.amtec.com/
FIELDVIEW: http://www.ilight.com/
EnSight: http://www.mscsoftware.com.au/products/software/cei/ensight/



4

Numerical Method

Multistage Runge-Kutta Scheme
Multistageschemesweredevelopedby Jameson,Schmidt,andTurkel (10) asa simplificationof classicalRunge-Kutta

integration schemesfor ODE’s. The simplification reducesthe requiredstorage,but also reducesthe time-accuracy of the
schemes,usuallyto secondorder. Thefollowing discussionof theseschemesshouldgive someguidancein choosingparame-
ters for running the code.

A k-stage scheme may be written as:

whereq is anarrayof five conservationvariables(see“Solution Q-File”, pp.27),k is thestagecount, is theprevioustime

step, arethemultistagecoefficientsdiscussedbelow, is thetimestep, is theinviscidpartof theresidual,and is

theviscouspartof theresidualincludingtheartificial dissipation.Notethat is evaluatedevery stage,but is evaluated

only at the initial stage for computational efficiency.
ThemaximumstableCourantnumber for ann-stageschemecanbeshown to be . Theactualstability limit

dependson the choiceof . For consistency mustequal1, andfor second-ordertime accuracy mustequal1/2.
Thevaluesof usedin thecodeandthetheoreticalmaximumCourantnumber aresetby a datastatementin subroutine
rk and are given in table 1.

The numberof stagesis setwith the variablenstg. Using is recommended,althoughJamesonet. al. tendto
favor 5 stages.Updating the physical and artificial viscosity termsmore often increasesthe robustnessof the multistage
schemes,but alsoincreasestheCPUtime perstage.Settingndis=2 causesthe4-stageschemeto updatethedissipative terms
duringstages1 and2, andcausesthe5-stageschemeto updatethemduringstages1, 3,and5. A goodcompromiseis nstg=4
andndis=2.

A spatially-varying is usedto acceleratetheconvergenceof thecode.Setting causestheCourantnumberto
besetto a constant(input variablecfl) everywhereon thegrid. Thespatially-varying optionis highly recommended.For a
multiblock grid the time stepis recalculatedevery iteration.For a singleblock grid the time stepis storedandrecalculated
every icrnt iterations.Seticrnt to a moderatenumber, e.g.10,sothat thetime stepis recalculatedoccasionally. Thetime step
is recalculated when the code is restarted and may cause jumps in the residual ificrnt is too big.

Implicit residualsmoothing(describedlater)maybeusedto increasethemaximumCourantnumberby a factorof two to
three, thereby increasing the convergence rate as well.

Artificial V iscosity
The codeusessecond-ordercentraldifferencesthroughoutandrequiresan artificial viscosity term to prevent odd-even

decoupling.A fourth-differenceartificial viscositytermis usedfor this purpose.This termis third-orderaccuratein spaceand
thusdoesnot affect the formal second-orderaccuracy of the scheme.The input variableavisc4scalesthe fourth-difference
artificial viscosity, andshouldbesetbetween0.25and2. Startwith avisc4=1.0. If thesolutionis wiggly, increaseavisc4by
0.5.If it is smooth,try reducingavisc4by 0.5.Largervaluesof avisc4mayimproveconvergencesomewhat,but themagnitude
of avisc4 has little effect on predicted losses or efficiency.

The codealsousesa second-differenceartificial viscosityterm for shockcapturing.The term is multiplied by a second
differenceof thepressurethat is designedto detectshocks.Notethat thesecond-differenceartificial viscosityis first-orderin
space,sothatthesolutionreducesto first-orderaccuratenearshocks.Two otherswitchesdevelopedby Jameson(10)areused
to reduceovershootsaroundshocks.The input variableavisc2scalestheseconddifferenceartificial viscosity, andshouldbe

k

2 1.2 1. .95

3 .6 .6 1. 1.5

4 .25 .3333 .5 1. 2.8

5 .25 .1667 .375 .5 1. 3.6

Table 1 — Runge-Kutta parameters  and maximum Courant number  for k-stage schemes.
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set between 0. and 2. Use 0. for purely subsonic flows, and start with avisc2=1.0 for flows with shocks. If shocks are wiggly,
increase avisc2 by 0.5. If they are smeared out, try decreasing avisc2 by 0.5. Shocks will be smeared over four or five cells
regardless of the value of avisc2. The magnitude of avisc2 also has little effect on predicted loss or efficiency.

Eigenvalue scaling described in (3) is used to scale the artificial viscosity terms in each grid direction. This greatly
improves the robustness of the code. The artificial viscosity is also reduced linearly by grid index near walls to reduce its effect
on the physical viscous terms. Input variables jedge, kedgh, and kedgt are the indices where the linear reduction begins.

A first-order artificial viscosity term may be added to smooth the solution drastically during solution start-up. The variable
avisc1 scales this term. First-order artificial viscosity will greatly improve the convergence rate while greatly diminishing the
accuracy of the solution. It will thicken boundary layers, smear shocks, and greatly increase predicted loss. Do not use first-
order artificial viscosity except to start a new solution. A warning is printed in the output when .

Implicit Residual Smoothing
Implicit residual smoothing was introduced by Lerat in France and popularized by Jameson in the U.S. as a means of

increasing the stability limit and convergence rate of explicit schemes. The idea is simple: run the multistage scheme at a high,
unstable Courant number, but maintain stability by smoothing the residual occasionally using an implicit filter. The scheme
can be written as follows:

where are constant smoothing coefficients in the three body-fitted coordinate directions indicated in
figure 1. Here  is a second-difference operator,  is the smoothed residual, and R is the unsmoothed residual.

It can be shown that if the scheme converges, implicit residual smoothing does not change the solution. Linear stability
theory shows that the scheme can be made unconditionally stable if is big enough, but also shows that the effects of the arti-
ficial viscosity are diminished as the Courant number is increased. In practice the best strategy seems to be to double or triple
the Courant number of the unsmoothed scheme. If the residual is smoothed after every stage, the theoretical 1-D values of
needed for stability are given by:

where is the Courant limit of the unsmoothed scheme (given in the previous table,) and is the larger operating Courant
number. For example, to run a four-stage scheme at a Courant number , the smoothing coefficient should be:

A single variable is input to Swift. The 1-D limit given above usually gives a reasonable estimate for , but the
code will converge best when is minimized. Values of are evaluated at each grid point within the code by
scaling eps using the same Eigenvalue scaling coefficients used for the artificial dissipation. This has proven to be quite robust.

In rare cases it may be necessary to increase the residual smoothing coefficient in a particular direction. This can be
accomplished using input variables epi, epj, and epk, which are constants (usually 1.) that multiply  at each point.

Implicit residual smoothing involves a scalar tridiagonal inversion for each variable along each grid line in each direction.
It adds about 20 percent to the cpu time when applied after each stage. Smoothing can be done after every other stage to reduce
cpu time (about 7 percent,) but eps must be increased (approximately doubled.)

Recommended starting values are: , , , and . If the code blows up quickly try
increasing eps to 1.5. Very large values of eps (e.g. > 3) may stabilize a stubborn calculation but prevent the residuals from
decreasing. If the residuals drop a little then climb to a large, constant value, eps is probably too big and the solution is proba-
bly incorrect.

Preconditioning
Density-based schemes like Swift solve the continuity equation by driving the density residual to zero. For low speed

(nearly incompressible) flows the density residual is physically near zero, and the schemes fail to converge. Preconditioning,
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described by Turkel in (12) improves the convergence rate in two ways. First, it replaces the q-variables
with variables that are better-behaved at low speeds , where p is the pressure

and h is the total enthalpy. Second it multiplies the equations by a matrix designed to equalize the wave speeds of each equa-
tion. The preconditioning matrix has the local flow velocity in the denominator and must be limited when the velocity becomes
small. The preconditioning operator is designed so that it has no effect on the steady-state solution.

Preconditioning works extremely well for the Euler equations and less well for the Navier-Stokes equations. It will allow
solutions at very low speeds that simply would not work otherwise.

H-CUSP Scheme
The H-CUSP upwind scheme was developed by Tatsumi, Martinelli, and Jameson in 1994-5. The scheme is implemented

as a standard central-difference (C-D) flux plus a dissipative flux. For efficiency the dissipative flux is only updated after the
first stage or two the Runge-Kutta scheme. Nevertheless, the H-CUSP scheme is 30-40 percent slower than the standard C-D
scheme. The H-CUSP scheme has excellent shock capturing properties but is a little more dissipative than the C-D or AUSM+

schemes. Details of the implementation of the H-CUSP scheme in Swift are given in (13.)
The dissipative flux is calculated using a a blend of two schemes: the SLIP scheme and the CUSP scheme. The SLIP

(Symmetric Limited Positive) scheme is used at low speeds. It adds a second difference of the conservation variables to the
C-D flux. The conservation variables are evaluated at cell centers using the SLIP limiter, which gives a third-order dissipation
in smooth regions of the flow and first-order dissipation near shocks. The CUSP (Convective Upward Split Pressure) scheme is
used at high speeds. It adds upwind differences of the inviscid fluxes to give a true upwind scheme. The fluxes are split into
advective and pressure parts similar to the AUSM+ scheme. The H-CUSP scheme is based on the total enthalpy, while the E-
CUSP scheme (not included in Swift) is based on internal energy. Switching between the SLIP and CUSP schemes is done
using piecewise linear functions of the interface Mach number.

AUSM+ Scheme
The Advection Upstream Splitting Method (AUSM) upwind scheme was introduced by Liou and Steffen in 1991. Since

the AUSM scheme evaluates the inviscid fluxes using true upwind differences at each stage of the Runge-Kutta scheme, it is
40-50 percent slower than the standard C-D scheme. The AUSM+ scheme has excellent shock capturing properties and seems
to be more robust at low speeds than the C-D or H-CUSP schemes. Details of the implementation of the AUSM+ scheme in
Swift are given in (13.)

The AUSM scheme splits the inviscid fluxes into advective and acoustic parts, and differences them separately. Upwind-
ing depends on polynomial functions of the cell interface Mach number. Second-order accuracy is maintained using the van
Albada limiter. Liou revised the polynomial functions in 1996 and renamed the scheme AUSM+.

In 1999 Liou and Edwards described a numerical speed of sound, which makes the inherent numerical dissipation of the
scheme behave properly even at very low speeds. Two additional diffusive terms are also included in the scheme to insure pres-
sure-velocity coupling at low speeds: a pressure-diffusion term is added to the interface Mach number, and a velocity diffusion
term is added to the interface pressure.

q ρ ρu ρv ρw e,, ,,[ ]= W p ρu ρv ρw h,, ,,[ ]=
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Grids
Swift canhandlesingle-blockgridsanda limited varietyof multi-blockgrids.GridsareusuallygeneratedusingTCGRID

(9). Dummygrid linesareusedto handleperiodicboundaryconditionsandtransferof informationbetweenblocks,andmust
beincludedin thegrid file. All grid typescurrentlysupportedby Swift will haveadummygrid line at j=jm, exceptfor gridsin
rectangularductswhichhavenodummygrid line. Gridsarestoredin standardPLOT3D format(see“Grid XYZ-File”, pp.27.)

Theconnectivity betweenthegridsis specifiedusinganindex file (see“Index File”, pp.22.) In TCGRID,settingiswift=1
in namelist 5 will automatically adddummy grid lines and produce a preliminary index file.

C-grids (Blades)
ThebasicSwift grid consistsof aC-typegrid aroundablade,asshown in figures1 and2. Thei-directiongoesfrom i=1 at

thelower exit to i=im at theupperexit. Thej-directiongoesfrom j=1 at thebladeto j=jm-1 at theperiodicboundary(j=jm at
thedummygrid line.) Thek-directiongoesfrom 1 at thehubto k=km at thetip. Calculationsrunwith asinglegrid avoid some
data I/O and thus run about 10 percent faster than a multiblock grid with the same number of points.

H-grids (Upstream, Blades, Rectangular Ducts)
Threetypesof H-gridsaresupportedin Swift v.300.Thetypeof H-grid is flaggedby index file variablei1 (seeIndex File,

pp.22.
1. An H-grid canbeaddedto extendaC-gridupstream,asshown in figure2. A dummygrid line is neededat j=jm to apply

the periodic boundary conditions. Flagged by settingi1=0.
2. A singleH-grid canbeusedinsidea bladepassage,asshown in figure3. A dummygrid line is neededat j=jm to apply

the periodic boundary conditions. Multiblock grids are not supported with this grid type. Flagged by settingi1>1.
3. An H-grid canalsobeusedinsidea rectangularduct (not shown.) No dummygrid linesareneeded.Multiblock grids

are not supported with this grid type. Flagged by settingi1=1.
In eachcasethei-index goesfrom inlet to exit, thej-directiongoesfrom bladeto blade,andthek-directiongoesfrom hubto
tip.

O-grids (Hub and Tip Clearance Gaps)
O-typegridscanbeusedto resolve thehubor tip clearanceregionsof blade(visible in figure5.) Clearanceregionscan

alsobemodeledusinga simpleperiodicboundaryconditionthatdoesnot requiregriddingtheregion.For O-gridsthei-direc-
tion startsat thetrailing edgecutandwrapsaroundtheO. Thej-directionstartsat thecenterline cutandgoesto theperimeter
of theO. j=jm is adummygrid line thatoverlapstheconnectingC-gridby onepoint.Thek-directiongoesfrom thehubto the
blade for hub clearances, or from the blade to t he casing for tip clearances.

Multistage Grids
Using TCGRID, multi-stage grids must be generated row-by-row. A grid for a one-stage turbine is shown in figure 4.
Themeridionalgrid mustbecontinuousacrossmultistagegrids.Thismeansthatall gridsmusthave identicalhubandcas-

ing coordinateszhub,rhub, etc.,identicalnumberof spanwisepointskm, identicalspanwisespacingparametersdshub,dstip,
etc.,andidenticalclearanceparameters.Neighboringgridsmusthave matchingdownstream/upstreamboundarycoordinates
zbc, rbc.

Bladesmustbeorientedcorrectlyin theθ-directionandplacedin their correctaxial location.TCGRID variableszscale,
tscale, rscale, ztrans, andtflip will help with blade placement.

Dummygrid linesmustoverlaptheneighborsexactly onecell, asshown in figure4. Thespacingaheadof theinlet is set
usingdsmax. Thespacingat theexit canbesetusingdslap. Thusdslapfor theupstreamgrid mustequaldsmaxfor thedown-
streamgrid. It maytakeafew iterationsto getnicelyoverlappinggrids.It mayhelpto startwith thedownstreamgrid andwork
upstream.

Grid files from neighboringbladerows arecombinedinto a multi-block PLOT3D file usingthe includedutility routine
MULTIX, which promptsfor file namesandshouldbe self-explanatory. TCGRID generatesindex files for eachbladerow.
These must be merged manually using an editor.

Additional details about generating multistage grids are given in the TCGRID user’s manual.
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Getting Started – Unix

Unpacking
For unix systems Swift is supplied as a gzipped tar file called swift.tgz. To open:

gunzip swift.tgz
tar -xvf swift.tar

This will create a directory called swift.300 with subdirectories for the source, documentation, and test cases.

Compiling
Swift must be compiled with a Fortran 90 compatible compiler. Edit modules.f90 and change the maximum array size if

desired (see Parameter Statement below.) Edit the Makefile and change the compiler name (f90) and options (OPTS) as neces-
sary for your compiler. Full optimization and no debug are recommended. On SGI machines, the -apo option compiles Swift
for multiple processors.

cd swift.300/src; make
The executable file swift remains in the src directory. To delete the object files and executable,

make clean

Important Note: Modules.f90 and mut1d.f90 contain several Fortran 90 modules that are used within other routines. They
must be compiled before any other routines are compiled. If you ever need to recompile, be sure to compile modules.f90 and
mut1d.f90 first.

Parameter Statement
Swift uses dynamic memory allocation for most arrays to avoid redimensioning. However, for programming convenience

the maximum size of many work arrays are set using a Fortran module defined in modules.f90.
  module maxsize
! Maximum dimensions of q-vector & small arrays
! Must be compiled first
! Change & recompile for larger grids

  save
  integer,parameter::ni=255,nj=54,nk=63
  integer,parameter::maxjk=max(nj,nk)

  end module maxsize
This grid size (255 x 54 x 63) is large enough for most problems but can be increased to any size as needed.

Running Swift for the Goldman Turbine Vane Test Case
First cd to the appropriate directory and generate the grid using TCGRID.

cd swift.300/gold
~/tcgrid.300/src/tcgrid < gold.int

The grid should run in a few seconds. The output can be redirected to a file if desired. The grid and index file are written
to the appropriate Fortran units for Swift, but it helps to give them descriptive names and link them back to the correct unit.

mv fort.1 gold.xyz; ln gold.xyz fort.1
mv fort.10 gold.ind; ln gold.ind fort.10

Gold.ins contains the namelist input. It should be set up to run 50 iterations of the central-difference scheme. Run Swift as
a standard unix process.

../src/swift < gold.ins > gold.out &
The 50 iterations should run fairly quickly. You will need to run about 1500 iterations to get a converged solution. The

output solution file is written to fort.3 in binary format. Rename it and link it to fort.2.
mv fort.3 gold.0050.q; ln gold.0050.q fort.2

Edit the input file, set iresti=1 and itmax=1450. Then run Swift again as before.

Alter native I
Gold.jcl is a unix shell script that names the files, cats the namelist input to a file named input, and runs Swift. Two shell

variables are set near the top. pin is a prefix for the input file names. The solution input file is named pin.q (not used if



9

iresti=0.) pout is a prefix for the output file names. The solution output file is named pout.q and the printed output is named
pout.out. The shell variable kw is a flag for the k-ω file names. If kw=1 the k-ω files are named pin.kw and pout.kw.

Alternative II
Setting iopen=1 in the input file causes all files to be opened explicitly with a default file name. For example, the grid must

be named grid.xyz. Other file names are given in Table 2 on page 11. By using the default file names you can avoid the file
linking steps, but you may want to rename the files with more descriptive names later.

It is also possible to input your own file names using the namelist input. See the note under File Names, pp. 11.
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Getting Started – Windows

Unpacking
For Windows, Swift is supplied as a zipped file called swift.zip. Use Winzip or PKZIP to unzip it. This will create a direc-

tory called swift.300 with subdirectories for the source, documentation, and test cases.

Compiling
Swift must be compiled with a Fortran 90 compatible compiler. Compaq Visual Fortran works well, but I don’t have

enough experience to give step-by-step instructions. Please let me know if you can adapt my Makefile or have any information
about other compilers. In general, using Developer Studio:

Go to swift/src
Open a new Fortran console application
Edit modules.f90 and change the maximum array size if desired (see Parameter Statement below.)
Set compile options for full optimization and no debug tables
Compile modules.f90 and mut1d.f90 first
Build swift

Important Note: Modules.f90 and mut1d.f90 contain several Fortran 90 modules that are used within other routines. They
must be compiled before any other routines are compiled. If you ever need to recompile, be sure to compile modules.f90 and
mut1d.f90 first.

Parameter Statement
Swift uses dynamic memory allocation for most arrays to avoid redimensioning for most problems. However, for pro-

gramming convenience the maximum size of many work arrays are set using a Fortran module defined in modules.f90.
  module maxsize
! Maximum dimensions of q-vector & small arrays
! Must be compiled first
! Change & recompile for larger grids

  save
  integer,parameter::ni=255,nj=54,nk=63
  integer,parameter::maxjk=max(nj,nk)

  end module maxsize
This grid size (255 x 54 x 63) is large enough for most problems but can be increased to any size as needed.

Running Swift
To run the Goldman turbine vane test case, open a DOS window (Start/Programs/Accessories/Command prompt.)

cd swift.300\gold
Edit the TCGRID input file gold.int and set iopen=1 in namelist 3. This will cause all files to be opened with the default names
given in Table 2 on page 11. Now run TCGRID.

c:\tcgrid.300\src\tcgrid < gold.int
The grid should run in a few seconds. The output can be redirected to a file if desired. The grid and index file will be named
grid.xyz and index.dat respectively.

Edit the Swift input file gold.ins and set iopen=1 in namelist 3. The input should already be set up to run 50 iterations of
the central-difference scheme. Now run Swift.

..\src\swift < gold.ins > gold.out
The 50 iterations should run fairly quickly. You will need to run about 1500 iterations to get a converged solution. The

output solution file is written to q_out.q in binary format. Rename it to q_in.q.
rename q_out.q q_in.q

Edit the input file, set iresti=1 and itmax=1450. Then run Swift again as before.
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File Names
The namelist input file for Swift is read from Fortran unit 5 (standard input.) Printed output from Swift is written to For-

tran unit 6 (standard output.) Files linked to Fortran units 1-3, 7, 8, 10, and 13-15 may be used in the execution of Swift,
depending on input options. The files are described in Table 2 above.

All input files read using unformatted read statements, i.e., read(5,*), so you don’t have to worry about getting the data in
the right columns.

If iopen=0 the files are not explicitly opened in the code. You must link the files to the appropriate Fortran unit manually
under unix.

If iopen=1 all files are opened using the default names given above. This will be most useful under Windows.

Note: It is also possible to input your own file names using the namelist input. Edit subroutine openfile.f and uncomment the
one line that reads namelist 7 and recompile.

!     read (5,nl7)
Now add namelist & nl7 to your input file, and reset the prefix of any default file names using character strings, e.g.,

&nl7 grid=’gold.xyz’ q_in=’gold.0050.q’ &end
Any file names not reset retain their default names.

Unit Default name Description Reference

fort.1 grid.xyz grid file from TCGRID Grid XYZ-File, pp. 27

fort.2 q_in.q binary input solution file, read if iresti=1 Solution Q-File, pp. 27

fort.3 q_out.q binary output solution file, written if iresto=1 Solution Q-File, pp. 27

fort.10 index.dat ASCII index file, required Index File Variables, pp. 22

fort.7 kw_in.kw binary input k-ω file, read if ilt = 4 or 5 Turbulence Model k-w File, pp. 27

fort.8 kw_out.kw binary output k-ω file, written if ilt = 4 or 5 Turbulence Model k-w File, pp. 27

fort.13 profile_in.dat ASCII input qin file, read if iqin = 1 Inlet and Exit Profiles, pp. 27

fort.14 profile_ex.dat ASCII output pex file, read if ipex = 1 Inlet and Exit Profiles, pp. 27

fort.15 profile_out.dat ASCII output span file, written if ispan = 1 Inlet and Exit Profiles, pp. 27

Table 2 — Files used by Swift
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Nondimensionalization
The grid xyz-file may be input in arbitrary units of length. The input parameters to Swift and the variables in the output q-

file are strictly nondimensional, with the exception of lengths which must have the same units as the grid.
All quantities are nondimensionalized by an arbitrary reference stagnation state defined by stagnation density , sonic

velocity , and viscosity , where is defined at the stagnation temperature . Standard atmospheric
conditions, given in table 2 above, are often used for the reference state. However, any self-consistent state may be used as
long as the units of length are consistent with the grid units.

Input pressures and temperatures are nondimensionalized by and , respectively. Within the code pressures are
usually nondimensionalized by . Inlet pressures and temperatures are nondimensionalized similarly, so that

for cases in which the inlet is at standard conditions. However, and can also be set arbitrarily
using the initial condition input (see “Initial Condition Input”, pp. 21) or a qin file (see “Inlet and Exit Profiles”, pp. 27.) Input
velocities are sometimes nondimensionalized by  and sometimes input as a Mach number.

The reference state defines a reference Reynolds number Renr which must be input to Swift (see “&nam5 - Viscous
Parameters”, pp. 18.) Renr is given by and has units of [1/grid units.] Renr remains the same for all cases
with the same reference state and grid units.

Output quantities should be self explanatory, except for the mass flow. The mass flow may be output with the residual his-
tory (see “&nam6 - Output Control”, pp. 20, variable mioe.) Mass flow is also output in the tables labeled “theta-averaged
quantities,” at the bottom of the column labeled “% mdot.” In either case, the mass flow is nondimensionalized by and
has units of [grid units]2. The mass flow through the full annulus is given (rather than mass flow per passage,) so that the
printed mass flow should be constant through a multistage machine.

Ref. State English Units SI Units

2116.8 lbf/ft
2 1.0135 x 105 Pa

519 R 288.3 K

1116.7 ft/sec 340.39 m/sec

.0765 lbm/ft3 1.2246 kg/m3

85.5057 lbm/sec/ft2 416.8416 kg/sec/m2

1.285 x 10-5 lbm/(ft sec) 1.91 x 10-5 kg/(m sec)

6.65 x 106 [1/ft]
5.54 x 105 [1/in]

2.182 x 107 [1/m]
2.182 x 104 [1/mm]

Table 3 — Standard reference quantities usually used for nondimensionalization.

P0r

T 0r

c0r

ρ0r

ρ0rc0r

µ0r

renr

ρ0r
c0r µ0r µ0r T 0r c0r

2 γR( )⁄=

P0r T 0r
ρ0rc0r

2 ϒP0r=
P0in T 0in 1= = P0in T 0in

c0r

renr ρ0rc0r µ0r⁄=

ρ0rc0r
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Calculations for liquids

Nondimensionalization
Nondimensionalize using conditions for liquids, but calculate  as if for air.

R = 1716.58 ft2/(sec2 R) ideal gas constant

γ = 1.4 Cp / Cv

T0r = 60 F = 519 R

c0r = 1116.7 ft / sec

ρ0r = 62.37 lbm / ft3

P0r = ρ0r R T0r = 1,725,644 lbf / ft
2

ν0r =  ft2 / sec kinematic viscosity for water at 60 F

vispwr = 1 laminar viscosity ~ T

renr = c0r / ν0r =  / in (convert to appropriate grid units)

om = omega {rad / sec] / c0r (convert to appropriate grid units)

Initial Conditions

Calculate the inlet and exit velocities  from the flow rate Q and areas A using:

Approximate the Mach numbers for the initial conditions using:

Calculate the total pressure rise  from the head rise H using:

Calculate the pressure ratios for the initial conditions using:
.

Calculate the temperature ratios for the initial conditions using:

Calculate the static pressure rise  using:

Calculate prat using:

This should give a solution close to the correct flow rate, but you will probably have to run several cases with varying prat
to get the flow rate exactly.

Running Swift
You will have to use preconditioning to get a converged solution, but sometimes it is hard to get the preconditioning

started. Run Swift 100 – 200 iterations with preconditioning turned off using:
icdup=0, nstg=2, avisc2=1, avisc4=1, cfl=2.5, eps=1.5, ibcinu=1, ipc=0.

Then restart with preconditioning turned on
icdup=0, nstg=2, avisc2=1, avisc4=1, cfl=2.5, eps=1.5, ibcinu=1, ipc=1, refmr=.15, pck=.30.

The AUSM+ scheme should work well at low speeds, but I don’t have much experience with it. Try
icdup=1, nstg=2, cfl=2.5, eps=1.5, ibcinu=1, ipc=1, refmr=.15, pck=.30, ausmk=0.3.

c0r

1.217
5–×10

7.646
6×10

V 1 2,

V Q A⁄=

M V c0r⁄≈

P0∆

H P0∆ ρgH=

P02 P01⁄ P01 P0∆+( ) P01⁄=

T 02 T 01⁄ P02 P01⁄=

P∆

P∆ P0∆ 0.5ρ V 2
2 V 1

2–( )–=

prat P2 P01⁄ P1 P∆+( ) P01⁄= =
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Swift Input
Namelist input is used for most variables. Many variables have defaults assigned and can be defaulted (not input.)

Defaults are given in angle brackets, <Default=value> or <default.> If no default is given the value MUST be input.

Title

ititle An alphanumeric string of 80 characters or less printed to the output. The character string must be enclosed
in single quotes.

&nam2 - Algorithm Parameters

nstg Number of stages for the Runge-Kutta scheme, usually 4, but can be 2-5. <default = 4>

ndis Number of evaluations of artificial viscosity per stage. More than one evaluation usually improves robust-
ness but increases CPU time. <default = 1>

ndis > 1 gives 2 evaluations at stages 1 and 2 for nstg = 4.

ndis > 1 gives 3 evaluations at stages 1, 3, and 5 for nstg = 5.

icdup Flag for the type of differencing scheme.

= 0 Central-difference schemes, requires avisc2 and avisc4. <default>

= 1 AUSM+ scheme, requires ausmk, refmr and/or refms.

= 2 H-CUSP scheme, requires hcuspk, refmr and/or refms.

cfl Courant number, typically 5.6 (see Multistage Runge-Kutta Scheme, pp. 4.) If , cfl is the maxi-

mum Courant number, usually located somewhere near the leading edge at the blade surface. If ,
the Courant number will equal cfl everywhere. <default = 5.0>

avisc1 First-order artificial dissipation coefficient. Not recommended, but can sometimes be used to stabilize a
solution that blows up at startup. Set for the first 50 or so iterations if necessary, but be sure to

set as soon as the solution is running stably. (see “Artificial Viscosity”, pp. 4.) <default = 0.0>

avisc2 Second-order artificial dissipation coefficient. Typically 0. - 2. Use 0. for purely subsonic flow or 1. for
flows with shocks. <default = 0.5>

avisc4 Fourth-order artificial dissipation coefficient. Typically 0.25 - 1.5. Start at 1.0 and reduce avisc4to 0.5 if
possible. <default = 0.5>

irs Implicit residual smoothing flag. Usually = 1. (See Implicit Residual Smoothing, pp. 5.)

= 0 No residual smoothing.

= 1 Implicit smoothing after every Runge-Kutta stage <default.>

= 2 Implicit smoothing after every other stage. epsmust be increased for this option to work. Rarely used.

eps Overall implicit smoothing coefficient based on the 1-D stability limit (see “Implicit Residual Smoothing”,
pp. 5) Swift will calculate the 1-D limit if eps is defaulted.

epi, epj, epk Implicit smoothing coefficient multipliers for the i, j, and k directions. (see “Implicit Residual Smoothing”,
pp. 5) Rarely used. <default = 1.>

itmax Number of iterations, typically 50-1000 per run, but 1000-3000 may be needed for a converged solution.

ivdt Variable time step flag.

i vtstp 0=

i vtstp 1=

avisc1 1.=

avisc1 0.=
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= 0 Spatially constant time step.

= 1 Spatially variable time step. <default, highly recommended>

ipc Preconditioning flag, (see Preconditioning, pp. 5.)

= 0 No preconditioning. <default>

= 1 Preconditioning using the Merkel, Choi, Turkel scheme. Should give a substantial speedup for Mach
numbers < 0.3.>

= 2 Solves the equations using the preconditioning variable set, but sets the preconditioning matrix to the
identity matrix. Used to debug the preconditioning routines.

refms, refmr Reference relative Mach numbers used for preconditioning, and the H-CUSP and AUSM+ schemes.

Refms is an absolute Mach number used for stators and refmr is a relative Mach number used for rotors.
Should be approximately the largest Mach number expected in the flow. If the code blows up, try increasing
refm by 0.1.

pck Constant used to scale for preconditioning (Turkel’s parameter k.) The denominator in the precondi-

tioning matrix is limited to be > . Typically 0.1 - 0.3. Smaller values may improve conver-

gence, but larger values may be necessary for stability. <default = 0.15>

hcuspk Constant used to scale for the H-CUSP scheme. In the H-CUSP scheme the low-speed dissipation is

scaled by , i.e., hcuspk sets the minimum value of dissipation. Typical values are

0.05 – 0.10. Smaller values may cause wiggles in the solution. Larger values may improve convergence but
will increase predicted losses. <default = 0.05>

ausmk Constant used to scale for the AUSM+ scheme. In the AUSM+ scheme the numerical speed of sound is

used to calculate the pressure fluxes and the pressure diffusion term. The numerical speed of sound is a func-

tion of a reference Mach number, , so ausmk also controls the

dissipation of the scheme, but in a less obvious way than hcuspk. Typical values are 0.3 – 0.8. Larger values
seem to be needed for convergence, but don’t seem to hurt accuracy. <default = 0.8>

&nam3 - Boundary Condition & Code Control
Note: In the following discussion, for linear geometries (igeom=0,)  should be interpreted as .

Inlet boundary
At the inlet boundary are held constant. For subsonic flow a Riemann invariant based on is extrapolated

from the interior. Previous versions of Swift held constant and used a single flag, ibcin, to determine how was calcu-
lated. Ibcin is retained for compatibility. If ibcin is defaulted, two flags, ibcinv and ibcinw, determine how are deter-
mined. Properties that are held constant are either generated from the initial condition data in the input file or are read directly
from a qin-file.

ibcinu Inlet boundary condition flag for .

= 1 Extrapolate the Riemann invariant to the inlet. Used for most problems. <default>

= 2 Extrapolate  to the inlet. Recommended for low speed flows, especially with preconditioning.

ibcinv Inlet boundary condition flag for .

= 1  is held constant. <default>

M'ref

M'ref

pck M ′ref( )2×

M'ref

max M′ hcuspk M ′ref×,( )

M'ref

M0
2 min 1 max M ′2 ausmk M ′2ref×,( ),[ ]=

vm vθ vr, ,( ) u v w, ,( )

P0 and T 0 vm
vθ vr

vθ and vr

vm

vm

vθ

vθ
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= 2  is held constant.

ibcinw Inlet boundary condition flag for w .

= 1  is held constant. <default>

= 2  is held constant.

= 3  is held tangent to the meridional grid lines at the inlet. <default>

ibcin  Old inlet boundary condition flag, still supported. For all options  is held constant.

= 0 or defaulted: ibcinv and ibcinw are used to set the options as described above.

= 1  is held tangent to the meridional grid lines at the inlet. <default>

= 2 Supersonic meridional inflow - all quantities are held constant. (Rarely used except for the NASA
supersonic throughflow fan project.)

= 3  is held constant.

= 4  is held constant. <default>

Exit Boundary
Four primitive variables are extrapolated to the exit. The input parameter prat gives the exit pressure. The parameter ipex

determines where prat is specified and determines how the spanwise pressure distribution is calculated.

ibcex Exit boundary condition flag.

= 1 Prat is specified as a constant. Only applicable to linear geometries, or annular geometries with radial
outflow.

= 2 Supersonic meridional outflow. P is extrapolated to the boundary. Prat is not used. (Rarely used
except for the NASA supersonic throughflow fan project.)

= 3 Prat is specified at the exit. The spanwise variation of is found by solving radial equilibrium. is
constant blade-to-blade. <default>

= 4 Prat is specified at the exit hub or tip. The spanwise variation of is found by solving radial equilib-

rium. P is found as a perturbation about  using a characteristic boundary condition developed by Giles.

ipex Flag that tells where prat is specified. This can have a significant effect on the stability range of compressors.
For hub-critical machines ipex should be set to 0 to hold the hub pressure constant. For tip-critical machines
ipex should be set to 1 to hold the tip pressure constant.

If igeom = 0, prat is held constant over the exit.

= 0 Prat is specified at the hub <default.>

= -1 Prat is specified at the tip.

= 1 Exit pex-file is read from unit 14. (see “Inlet and Exit Profiles”, pp. 16)

Inlet and Exit Profiles
Inlet profiles of , and exit profiles of can be specified as boundary conditions for Swift. For conve-

nience, a common file format is used for both inlet and exit (see “Inlet and Exit Profiles”, pp. 27.) The profiles are input as
ASCII files containing six variables, at several spanwise locations. Only the variables needed at a

vθ vm⁄ αtan=

vr

vr

vr vm⁄ φtan=

vm

vθ

vm

vr vm⁄ φtan=

vr

p p

p

p

P0 vθ vr and T 0, , pstat

P0 vx vθ vr T 0 and pstat, , , , ,
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particular boundary are used, and the other variables are ignored. The profiles are interpolated linearly to the span of the actual
grid, and should resolve the endwall boundary layers.

Inlet and exit profile files for the current solution can be written by setting variable ispan=1. The output file, written to
unit 15, can be edited to extract inlet or exit profiles that can used for subsequent calculations. In this way a multistage
machine can be modeled one row at a time by using the exit profile from one blade row as the inlet profile to the next.

It may also be useful to modify output profiles manually, for example by replacing core flow quantities at a few points
while retaining boundary layer properties.

ispan Flag for writing spanwise profiles to unit 15.

= 0 No output generated. <default>

= 1 Spanwise profile output written to unit 15.

iqin Flag for reading inlet profile.

= 0 Inlet conditions are calculated by subroutine qincalc based on the initial condition data, boundary
layer thicknesses, etc. in the input file. Current input values are used, so the inlet profiles can be changed at
restart if desired. <default>

= 1 Inlet qin-file read from unit 13. Used to read an exit profile from a solution of an upstream blade row.

ipex Flag for reading exit pressure profile, also used to set location of prat. (see “Exit Boundary”, pp. 16)

= 1 Exit pex-file is read from unit 14.

Code Control

isymt Top-plane symmetry flag. Used to model the bottom half of a linear cascade with bottom-to-top symmetry.

= 1 Symmetry condition on k = km.

else Solid wall boundary condition on k = km. <default>

kbcor Obsolete flag for order of accuracy used in endwall boundary conditions. Still read for compatibility with
old input files, but not used.

ires Iteration increment for writing residuals in the output file. Typically 10. If the code is blowing up, set
 to print the size and location of the maximum residual at each iteration.

iresti Flag for reading input restart file. Restart files are in PLOT3D format.

= 1 Read restart file from unit 2.

else No action taken. <default>

iresto Flag for writing output restart file.

= 1 Write restart file to unit 3. <default>

else No action taken.

newkw Flag for running the k-ω turbulence model from scratch using an unchanging solution. Useful for starting a
new k-ω solution from an old Baldwin-Lomax solution.

= 0 Run k-ω model and flow solver. <default>

= 1 Run k-ω model from initial guess for itmax cycles. Write k-ω file to unit 8 and stop.

kwvars Number of variables to store in the k-ω file. (See Turbulence Model k-w File, pp. 27.)

= 3 Stores 3 variables . Saves storage but not PLOT3D compatible.

ires 1=

µtur k ω, ,[ ]
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= 5 Stores 5 variables . Increases storage but the k-ω file is PLOT3D compatible.

<default = 5>

iopen Flag for opening output files explicitly by name.

= 0 Output files are written to Fortran units without explicitly opening them. <default.>

= 1 Output files are opened by name:

grid.xyz = main grid file (binary)

index.dat= Swift index file (ASCII)

qin.q

&nam4 - Flow Parameters

igeom Flag for linear cascade or annular blade row.

= 0 Linear cascade.

= 1 Annular blade row <default.>

ga Ratio of specific heats γ. <1.4 for air>

om Normalized blade row rotational speed, , where Ω is the wheel speed in radians per second, and c0 has

dimensions of [grid units/sec], giving om dimensions of [1/grid units]. The (x,y,z) coordinate system must be
right-handed. Looking in the positive x-direction, clockwise rotation is negative and counterclockwise rota-
tion is positive. Ω is negative for most Glenn geometries. <default = 0.>

prat Ratio of the exit static pressure to the reference total pressure, .

expt Exponent used to specify the inlet whirl distribution. where is the mid-span

value of  determined from the initial condition input.

= 0 Gives uniform  except within the endwall boundary layer. <default>

= -1 Gives free vortex inflow.

= 1 Gives forced vortex inflow.

&nam5 - Viscous Parameters

ilt Inviscid, Laminar, or Turbulent analysis.

= 0 Inviscid. Most other viscous parameters are not used if ilt=0.

= 1 Laminar.

= 2 Turbulent using the Baldwin-Lomax turbulence model. <default>

= 3 Turbulent using the Cebeci-Smith turbulence model. This model works well for turbine heat transfer
but may overpredict losses for transonic compressors.

= 4 Fully turbulent using the Wilcox baseline k-ω turbulence model.

= 5 Turbulent with transition using the Wilcox low Reynolds number k-ω turbulence model. Note that
“low Reynolds number model” refers to modifications made to give reasonable calculations of flat plate tran-
sition, and not to near-wall modifications needed by k-ε models.

isst

µtur k ω Ret µlam, , , ,[ ]

Ω c0⁄

prat pexit P0r⁄=

Mθ Mθ r rmid⁄( ) texp
= Mθ

Mθ
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itur The turbulencemodel is updatedevery itur iterations.Recommendedvaluesare itur=5 for the Baldwin-
Lomax or Cebeci-Smith models, and itur=2 for the k-ω model. If the k-ω model blows up quickly it may
help to useitur=1 for the first 100-200 iterations. <default=5>

renr Reynoldsnumberper unit lengthbasedon referenceconditions, . Must have units of

. Generallymuchlargerthataconventional“free-stream”Reynoldsnumber. For example,for
standard conditions:

prnr Prandtl number. <default = 0.7 for air>

tw Normalized wall temperature, .

= 0 Adiabatic wall boundary conditions are used.

= 1  <default>

else .

vispwr  Exponent for laminar viscosity power law. <default = 0.667 for air> Usevispwr=0.0 for water.

prtr Turbulent Prandtl number. <default = 0.9>

cmutm Valueof at which transitionis assumedto occur. Baldwin andLomax recommend14. Canbe

increased to move transition downstream or vice-versa. If cmutm = 0, the flow is fully turbulent. <default =
14.>

jedge j-index wheretheartificial viscositybeginsto rampoff neartheblade.Also thelast j-index searchedfor the
bladeturbulentlengthscale.For theBaldwin-Lomaxturbulencemodel , jedge shouldbeagrid line
slightly bigger than the largest expected blade boundary layer. For the Cebeci-Smith turbulence model

, jedge should be a grid line slightly bigger than half the largest expected blade boundary layer.
<default = 10>

kedgh, kedgt k-indiceswhere the artificial viscosity begins to ramp off near the hub and tip. Also the last k-indices
searched for the hub and tip turbulent length scales. See comments forjedge. <default = 10>

iltin Flag controlling inlet velocity and P0 profiles.

= 0 Inviscid.

= 1 Laminar.

= 2 Turbulent using Cole's wall-wake profile. <default>

dblh, dblt Inlet hub and tip boundary layer thicknesses in grid units.

xrle, xrte Axial locationsat which thehubstartsandstopsrotating.Rotationalboundaryconditionsareappliedon the
hubfor . Stationaryconditionsareappliedelsewhere.Notethatxrle andxrte maynotbesuf-
ficient to locate the rotating part of the hub in a radial flow machine.Defaults are set to make the entire hub
rotate.

renr ρ0rc0r µ0r⁄=

1 grid units⁄[ ]

renr 0.0765˙
lbm

ft
3
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------------ 
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irle, irte i-indicesat which thehubstartsandstopsrotating.In radial flow machinesxrle andxrte maynot besuffi-
cient to locate the rotating part of the hub, so irle and irte can be used instead. This option only works cor-
rectly for asingleblockH-grid, andeventhenthegrid linesmaynotbestraight.Defaultsaresetto make the
entire hub rotate.

tintens Free-streamturbulenceintensitywritten asa decimal.Usedto get the inlet valueof k for the k-ω model.
<default=0.01, i.e., one percent.>

tlength Free-streamturbulence length scale. Used to get the inlet value of ω for the k-ω model. Typically
or . The free-stream turbulent viscosity

i s derived f rom tintens and tlength, and is printed near the top of the output. General l y

 to minimize the effects oftlength.

hrough Surfaceroughnessheightin grid units.In theBaldwin-LomaxandCebeci-Smithturbulencemodels(ilt = 2
or 3 respectively) surfaceroughnessis modeledusingtheCebeci-Changroughnessmodel.In thek-ω mod-
els (ilt = 4 or 5) surface roughness is modeled using Wilcox’s wall boundary condition for ω. In any case
hrough represents some equivalent sand grain roughness height, which is a factor of 2–4 times the RMS
height. Smooth surfaces are modeled by settinghrough = 0. <default = 0.>

Note: Previousversionsof Swift input hrough in turbulentwall units . In Swift version300theactual

height is used. If  Swift assumes old input was used and resetshrough to zero.

&nam6 - Output Control

oar Flagfor frameof referenceof outputq-file. Swift automaticallydetectstheframeof referenceof a restartq-
file and converts it to the absolute frame for internal use if necessary.

= 0. All blade rows are in the absolute frame of reference.

= 1. All blade rows are in the relative frame of reference. <default>

mioe Flagfor outputformatof massflow in residualhistory. For transonicfanstheinflow mayrespondslowly to
a changein backpressure,sotheinlet massflow canbemonitoredfor convergence.For turbinestheinflow
maychokequickly sotheoutflow canbemonitored.In generalthemassflow erroris agoodmeasureof con-
vergence and accuracy and should converge to a fraction of a percent (e. g., < 0.003).

= 1 Inlet mass flow history is written.

= 2 Exit mass flow history is written.

= 3 Mass flow error  is written. <default>

= 4 Eliminatesthemaximumresidual(whichalwayslookslike theRMSresidualanyway)andprints

and  instead. Calculate the mass flow error yourself with EXCEL if desired.

iqav Flag controlling type ofθ-averaging used in the output.

= 0 Energy average. Mass average of [ρ, V2, and T]. Usually the most optimistic average.<default>

= 1 Momentum average. Mass average of [ρ, ρV, and e], fairly conservative.

= 2 Mixed-outaverage.Formal averageof inviscid fluxesgivespropertiesfar downstream.Usually the
most conservative average.

= 3 Total pressureaverage.ConvertsP0 to an equivalentT0, massaverages,thenconvertsback.Often
done with experimental data. Usually similar to the energy average.

tlength 0.03 boundary layer height×≈ tlength 0.001 pitch×≈
µtur

µtur should be 0.1≤

h
+( )

hrough 4>

1 ṁout ṁin⁄–
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nko Number of k-indices for blade surface output, max = 10. <default = 0>

ko Array of nko k-indices separated by commas where blade surface output is desired. <default = 0>

iog Grid block number where spanwise output is desired. Spanwise output is normally printed at the inlet and
exit of each blade grid. Sometimes it is useful to have output from other cross-channel planes, say near the
trailing edge. This output can be generated for a single grid block by specifying the block number iog and
the desired i-indices io. <default = 1>

io Array of up to 10 i-indices where spanwise output is desired. For H-grids output is printed at each i index.
For C-grids the i-index and its periodic neighbor are merged. <default = 0>

ismout Flag for distance coordinate s used in blade surface output.

= 0 S = arc length around blade. <default>

else S = meridional distance along blade.

ileout Flag for location of leading edge (s=0) used in blade surface output.

= 0 S = 0 at i = imax/2 index. <default>

else S = 0 at smax/2.

Note:  For H-grids, S = 0 at i = ile.

Initial Condition Input
Immediately following the namelist input comes nrow+2 lines of data used for the initial guess and the inlet boundary

conditions. Nrow is the number of blade rows and is determined within Swift by counting the number of lines of input.
The first line is ignored and can be used for column labels. Subsequent lines give row number and nominal flow conditions

at mid-span. Unformatted reads are used, so all variables must be input.
A sample initial condition input for a seven-block grid is shown in figure 5. A portion of the input is repeated below.

  row        P0        Mx        Mt        Mr        T0
    0    1.0000     .1330    -.0000        0.    1.0000
    1     .9938     .1692    -.3986        0.    1.0000
   etc.

The variables are as follows:

row Integer blade row number. Row number 0 is the inlet. Subsequent row numbers represent the exits of each
blade row.

P0 Meanline .

Mx Meanline Mach number in the x-direction.

Mt Meanline Mach number in the θ- or y-direction.

Mr Meanline Mach number in the r- or z-direction.

T0 Meanline .

P0 P0r⁄

T 0 T 0r⁄
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Index File
The index file is an ASCII file that gives the grid sizes, connectivity, and certain boundary condition information for each

grid. It replaces namelist block &nl1 in RVC3D.
The first line is ignored and can be used for column labels. Subsequent lines give grid type, dimensions, key indices (like

itl and iil in RVC3D), connecting grid numbers, blade row number, and relative rotational rate for each grid. Negative values
are sometimes used to toggle boundary condition options. One line is required for each grid. Unformatted reads are used, so all
variables must be input.

For an isolated blade row, TCGRID will produce a complete index file written to unit 10. It may be necessary to modify
nhub or ntip if the simple periodicity clearance model is to be used, or to modify the rotation multipliers om, omh, or omt.

For multistage calculations the grids for each blade row are generated separately, and merged using the utility code MUL-
TIX. The separate index files must be merged manually using the unix cat command or an editor. Extraneous header lines must
be removed, and connectivity information must be added manually.

A sample index file for a seven-block grid is shown in figure 5. A portion of the file is repeated below.

grid type im jm km i1 i2 i3 nin nex nhub ntip nlr row om omh
omt

1 1 17 17 57 0 0 0 999 2 0 0 0 1 0. 0. 0.
2 2 127 37 57 14 57 0 1 -3 0 0 0 1 0. 0. 0.

etc.

Index File Variables

grid Grid (block) number, from 1 to number of grids

type Flag giving type of grid.

= 1 H grid for upstream

= 2 C grid for blades

= 3 O grid for hub or tip clearances

im Number of grid points in i-direction.

jm Number of grid points in j-direction.

km Number of grid points in k-direction.

i1 (C-grid) Lower i-index of trailing edge. Upper index is assumed to be periodic.

i1 (H-grid) Leading-edge index of an H-grid, or flag for the type of H-grid geometry. Note: Swift.300 supports inlet H-
grids ahead of C-grids, H-grids in blade passages, and H-grids in rectangular ducts.

= 0 – This is an inlet H-grid ahead of a C-grid

= 1 – This is an H-grid in a rectangular duct

> 1 – i-index of the leading edge for an H-grid around a blade

i2 (C-grid) Lower i-index of inlet (or last periodic point.) Upper index is assumed to be periodic.

i2 (H-grid) i-index of the trailing edge for an H-grid around a blade

i3 Unused, set to 0.

nin Inlet boundary condition flag.

= 999: C- or H-grid with conventional inlet boundary condition.

> 0: C-grid inlet patched to upstream H-grid number nin.

< 0: C-grid inlet mixed-out from upstream C-grid number nin
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nex Exit boundary condition flag.

= 999: C-grid with conventional exit boundary condition.

> 0: H-grid exit patched to downstream C-grid number nex.

< 0: C-grid exit mixed out to downstream C-grid number nex.

nhub Flag for hub clearance. Note: In Swift.300 hub and tip clearances can be modeled simultaneously.

> 0: Connecting grid block number for gridded hub clearance.

= 0: No hub clearance.

< 0: Simple periodicity hub clearance model between k=1 and k=|nhub|.

ntip Flag for tip clearance. Note: In Swift.300 hub and tip clearances can be modeled simultaneously.

> 0: Connecting grid block number for gridded tip clearance.

= 0: No tip clearance.

< 0: Simple periodicity tip clearance model between k=|ntip| and k=km.

nlr Unused, set to 0.

row Integer blade row number between 1 and the number of rows. Corresponds to row number in initial condi-
tion input.

om(n) Rotation multiplier. The rotational speed for this grid is . Usually 0.0 for stators, 1.0 for rotors,
or -1.0 for counterrotating rotors. (See &nam5 - Viscous Parameters, pp. 18 for definition of normalized
blade row rotational speed om.)

omh Hub rotation multiplier. Rotational speed for k=1 on this grid is . Usually 1.0 for rotating hubs.
Overridden by variables xrle and xrte, the axial locations at which the hub starts and stops rotating (see
“&nam5 - Viscous Parameters”, pp. 18.)

omt Tip rotation multiplier. Rotational speed for k=km on this grid is . Usually 0.0 for stationary
shrouds or 1.0 for rotating shrouds.

om om n( )×

om omh×

om omt×



24

Swift Output
Printed output from Swift is written to Fortran unit 6 (standard output.) The output is divided into several sections. The

sections may be separated using an editor and plotted using any x-y plotting package that can read ASCII column data.

1. The input variables are echoed back for reference, and any comments or warnings regarding the input are given.
2. Spanwise profiles of flow variables are given at the inlet or exit. These variables are either based on the

initial guess or on a restart file, depending on how the code is started. The initial profiles are often useful for identifying
grid lines near endwall boundary layers.

3. A convergence history gives maximum and RMS residuals of density, and exit flow properties versus iteration.
4. Spanwise profiles of flow variables are repeated at the inlet and exit for the new solution. Four different

averaging schemes are available for computing these profiles. Note that all quantities are evaluated locally, except for
the columns labeled “P0 loss” (for stators) or “ad.eff” (for rotors.) These quantities are calculated between the grid inlet
and grid exit of each blade row.

5. Blade surface profiles of various quantities are given on selected k grid lines (spanwise locations.) Values of for the
first grid point are given for checking turbulent grid spacing, and maximum values of are given to identify transition
points.

θ averaged–

θ averaged–

y
+

µT
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Test Cases
Each test case is stored in a separate directory. Files named *.int are the TCGRID input files. Files named *.ind are Swift

index files. Files named *.jcl are unix script files for linking files and running Swift. These files also contain the input data, and
may contain comments about how to run the case. Files named *.ins are the raw Swift input if you need to run manually. Files
named *.out are the my output files for the case. In some cases I have included the experimental data shown in the plots. This
should be self explanatory.

Goldman Turbine Vane
The first test case is for an annular turbine vane tested by Goldman at NASA Glenn Research Center. Computed results

were presented previously in references 2, 4, and 13. Current results are shown in figure 6.
The grid is shown at the top left of the figure. The grid size was , for a total of 102,432 points. The grid size

is intentionally coarse is to make the test case run quickly, but the results are still very good.
Solutions were run using the C-D, H-CUSP, and AUSM+ schemes and the Baldwin-Lomax turbulence model. The stan-

dard four-stage Runge-Kutta scheme was used with cfl=5.6. The calculations were run 1500 iterations. On an 300 MHz SGI
Octane, the C-D solution took about 30 minutes, the H-CUSP solution took about 32 minutes, and the AUSM+ solution took
about 45 minutes.

Convergence histories for the C-D solution are shown at the bottom left. The other schemes behave similarly. Exit total
pressure converges to three significant digits in about 1000 iterations, and mass flow error converges to about
0.001.

Mach contours at midspan are shown at the top right. The flow is entirely subsonic. The thin boundary layers and wake are
evident.

Comparisons with experimentally-measured exit profiles are shown at the bottom right. For total pressure loss, the C-D
results show little detail along the span. The H-CUSP results show some detail near the tip but too much loss near the hub. The
AUSM+ results show good qualitative agreement with the data along the entire span. All results show higher losses than the
data at midspan. The midspan loss does not improve with increasing grid resolution, and may be due to poor modeling of the
round trailing edge. For flow angle, the C-D results show nearly uniform flow angle along the span, and the H-CUSP results
are only slightly better. The AUSM+ results show excellent agreement with the data along the entire span.

NASA Rotor 67
The second test case is for a low aspect ratio transonic fan denoted NASA rotor 67 that was also tested at NASA Glenn

Research Center. Solutions were computed with three different grids: a C-grid, an H-grid, and a multiblock H-C-O grid that
resolved the tip clearance. All grids had the same wall spacings and spanwise distributions. All results were computed using
the central-difference scheme, but different clearance and turbulence models were used. Computed results have been presented
previously in ref. 3. Current results are shown in figure 7.

Multi-block Grid
Multi-block calculations were made using a three-block grid that resolved the tip clearance, as shown at the top left of fig-

ure 7. The upstream H-grid had points, the C-grid around the blade had points, and the O-grid in
the tip clearance region had points, for a total of 373,625 points. The inlet boundary was approximately one axial
chord upstream of the leading edge. The Baldwin-Lomax turbulence model was used for these calculations. The calculations
were run 1500 iterations on an SGI Origin 2000 system with 6 processors. The wallclock time was about 1.1 hours.

C-grid
Single-block calculations were made using the same C-grid that was used for the multi-block calculations. The grid size

was 339,031 points. The inlet boundary was approximately 0.23 axial chords upstream of the leading edge. The simple period-
icity tip clearance model and the k-ω turbulence model were used. The calculations were run 1500 iterations on an SGI Origin
2000 system with 6 processors. The wallclock time was about 1.25 hours because of the k-ω model.

H-grid
Single-block calculations were also made using an H-grid with  points. H-grids need fewer

i-direction points than C-grids, but need more j-direction points to resolve the blade boundary layers. Here the inlet boundary
was approximately 0.76 axial chords upstream of the leading edge. The simple periodicity tip clearance model and the k-ω tur-
bulence model were also used here. The calculations were run 1500 iterations on an SGI Origin 2000 system with 8 proces-
sors. The wallclock time was about 1.6 hours.

97 32 33××

1 ṁout ṁin⁄–

25 19 49×× 187 37 49××
147 11 7××

151 54 49×× 399 546,=
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Convergence histories are shown at the bottom left. The three grids converge quite differently, but in each case inlet mass
flow and exit total pressure converge to three significant digits in about 1000 iterations.

The pressure ratio prat was chosen to give an operating point near peak efficiency. Mach contours at 90 percent span are
shown at the top right. The bow shock system and passage shock can be seen.

Comparisons with experimentally-measured exit profiles are shown at the bottom right. All exit profiles are in good agree-
ment with the experimental data. The results are nearly independent of the grid topology, but do depend on the turbulence
model. The Baldwin-Lomax model (3-block grid) predicts somewhat higher pressure ratios and efficiencies than the k-ω
model (C- and H-grids.) The k-ω SST may give better results for this problem.

Large Low Speed Centrifugal Compressor
The third test cast is for the large low speed centrifugal impeller tested at NASA GRC by Hathaway, et. al. The original

calculations were shown in reference 7. Current results are shown in figure 8. The current results used an H-grid with
points, shown at the top left. The simple periodicity tip clearance model and Baldwin-Lomax tur-

bulence model were used.
The solution was run with the standard C-D scheme for 100 iterations to get the solution started. Then preconditioning

was turned on since the flow is relatively low speed. Convergence histories shown at the bottom left show that the pressure
ratio and mass flow error were roughly converged in 2500 iterations. The total wallclock time was about 1.1 hours on an SGI
SGI Origin 2000 system with 6 processors.

Computed surface pressure contours are shown at the top right. A comparison of computed and measured blade pressures
at mid span is shown at the bottom right. The experimental results were measured at a flow rate of 66.14 lb/sec, but the com-
puted mass flow was 70.0 lb/sec. Increasing the exit pressure prat will decrease the computed flow rate and should improve the
agreement with the data. The discrepancy on the pressure side near the trailing edge was noted in ref. 7 and is still unexplained.

Single Stage Turbine
The last test case is for a two-stage turbine tested by Dunn, et. all. The original calculations were shown in reference 8.

The current results were done for the first stage only and are shown in figure 9. A three-block grid similar to the one shown in
figure 5 was used. The stator grid had points. The rotor grid had
points. And the rotor clearance grid had  points, for a total of 413,635 points.

For this test case the stator and rotor grids are generated separated, and linked with a utility named multix. The source
code multix.f is included. The file run_multix.exe is a unix script that will do almost everything for you. It is liberally com-
mented if you want to do this manually. The file out.ind is the preliminary index file generated by multix. The file stg1.ind has
been manually edited to add grid connectivity, inlet and exit flags, hub and tip rotation multipliers, etc. Notice the differences
between the two *.ind files to see what you may need to add for other multistage calculations.

The solution was run 2000 iterations from scratch with preconditioning turned on. The wall temperature ratio was set to
0.7 so that heat transfer calculations could be made. The Cebeci-Smith turbulence model was used. Convergence histories at
the bottom left of the figure show that pressure ratio converged quickly and mass flow error converged more slowly, but both
look good after 2000 iterations.

Computed surface pressures are shown at the top left. A comparison of computed and measured pressures on the stator at
mid span is shown at the top right. The agreement is very good.

Comparisons of computed and measured Stanton numbers (heat transfer coefficients) are shown at the bottom right. Com-
puted Stanton numbers are somewhat high for the stator, but are in very good agreement with the data for the rotor.

127 48 41×× 249 936,=

127 37 45×× 211 455,= 127 33 45×× 188 595,=
95 13 11×× 13 585,=
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File Descriptions

Grid XYZ-File
Grids are stored using standard PLOT3D xyz-file format. Grids can be read with the following Fortran code:

c     read grid coordinates
      read(1)im,jm,km
      read(1)(((x(i,j,k),i=1,im),j=1,jm),k=1,km),
     &       (((y(i,j,k),i=1,im),j=1,jm),k=1,km),
     &       (((z(i,j,k),i=1,im),j=1,jm),k=1,km)

Solution Q-File
Solution files are stored in standard PLOT3D q-file format. Solution files can be read with the following Fortran code:

c     read q-file
      read(2)im,jm,km
      read(2)eminf,aldeg,renr,time
      read(2)((((qq(l,i,j,k),i=1,im),j=1,jm),k=1,km),l=1,5)

c     additional geometry data and residual history
      read(2)itl,iil,phdeg,ga,om,nres,igeom,dum,dum,dum
      read(2)((resd(n,l),n=1,nres),l=1,5)

The q-variables are:

If oar=1 the relative velocity components are stored, , .

Turbulence Model k-ω File
Restart files for the k-ω turbulence model are stored in standard PLOT3D q-file format. Solution files can be read with the

following Fortran code:

c     read tmu, k, w
      read(7)im,jm,km
      read(7)dum
      read(7)((((tkw(l,i,j,k),i=1,im),j=1,jm),k=1,km),l=1,kwvars)

The tkw-variables are:

Note that the laminar viscosity and the turbulence Reynolds number are not used by Swift. They are written
to pad the file for PLOT3D compatibility if kwvars=5. This results in larger file sizes than necessary. Smaller files may be gen-
erated by setting kwvars=3, but the files cannot be read by PLOT3D.

Inlet and Exit Profiles
Inlet profiles of , and exit profiles of can be specified as boundary conditions for Swift. For conve-

nience, a common file format is used for both inlet and exit. The profiles are input as ASCII files containing six variables,
at several spanwise locations. Only the variables needed at a particular boundary are used, and the

q
ρ

ρ0r
-------- ρu

ρ0rc0r
---------------- ρv

ρ0rc0r
---------------- ρw

ρ0rc0r
---------------- e
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2

----------------, , , ,=

e ρ CvT
1
2
--- u

2
v

2
w

2
+ +( )+ 

 =

v′ v Ωz–= w′ w Ωz+=

tkw
µtur

µ0r
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c0r
2

------- ω
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Retur
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other variables are ignored. The profiles are interpolated linearly to the span of the actual grid, and should resolve any desired
endwall boundary layers.

A sample profile file can be generated by setting variable ispan=1. The output written to unit 15 may be edited manually
to extract the desired profile. The format is as follows:

&ospan irow = 0 kin = 95 flow = 119.25082 &end
k    s/span    P0/P0i     vx/c0    vth/c0     vr/c0    T0/T0i    ps/P0i
1   0.00000   1.12907   0.00000  -0.65789   0.00000   1.06326   0.83876
2   0.00019   0.90181  -0.07050  -0.31211  -0.01668   1.00000   0.83864
etc.

The first line is namelist input. Only kin is required.

kin Number of spanwise points.

irow Dummy variable not used by Swift, but useful for identifying the desired profile from an output file. Irow
gives the relative location of the profile, where irow=0 is the inlet, irow=1 is the exit of the first blade row,
irow=2 is the exit of the second blade row, etc.

flow Dummy variable not used by Swift. Flow is the non-dimensional mass flow and is included for use by the
CSTALL code now under development.

The second line has titles for convenience but is not read. The remaining kin lines have the following variables:

k Spanwise index, not used.

s/span Normalized spanwise distance, between 0.0 at the hub to 1.0 at the tip.

P0/P0i Normalized total pressure, used for inlet profiles only.

vx/c0 Normalized axial velocity, not used.

vth/c0 Normalized tangential velocity, used for inlet profiles only.

vr/c0 Normalized radial velocity, used for inlet profiles only.

ps/p0i Normalized static pressure, used for exit profiles only.
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Figure 1 — 3-D coordinate system and grid indexing system
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 grid type   im   jm   km   i1   i2   i3  nin  nex nhub ntip nlr row  om omh omt
    1    1   17   17   57    0    0    0  999    2    0    0   0   1  0.  0.  0.
    2    2  127   37   57   14   57    0    1   -3    0    0   0   1  0.  0.  0.
    3    2  127   33   57   17   57   45   -2   -5    0    4   0   2  1.  1.  0.
    4    3   95   13   13    0    0   45    0    0    0    3   0   2  1.  1.  0.
    5    2  127   37   57   14   55    0   -3   -6    0    0   0   3  0.  0.  0.
    6    2  141   33   57   21   64   45   -5  999    0    7   0   4  1.  1.  0.
    7    3  101   13   13    0    0   45    0    0    0    6   0   4  1.  1.  0.

Seven-block grid for a two-stage turbine with rotor tip clearances.

Block diagram of a seven block grid..

Index file

  row        P0        Mx        Mt        Mr        T0
    0    1.0000     .1330    -.0000        0.    1.0000
    1     .9938     .1692    -.3986        0.    1.0000
    2     .8210     .1984     .0802        0.     .9518
    3     .8112     .1858    -.4175        0.     .9518
    4     .7964     .3693     .0852        0.     .9059

Figure 5 — Grid, block diagram, index file, and initial condition data for a two-stage turbine with rotor tip clearances.

Initial condition data.
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Figure 6 — Goldman annular turbine vane test case

97 x 32 x 33 computational grid

Convergence histories

Mach number contours at midspan

Comparison of computed and measured exit profiles
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Figure 7 — NASA rotor 67 test case
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Figure 9 — Single stage turbine test case
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