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Abstract

A rapid quasi-three-dimensional analysis has
been developed for blade-to-blade flows in turbo-
machinery. The analysis solves the unsteady Euler
or thin-layer Navier-Stokes equations in a body-
fitted coordinate system. It accounts for the
effects of rotation, radius change, and stream-
surface thickness. The Baldwin-Lomax eddy-
viscosity model is used for turbulent flows. The
equations are solved using a two-stage Runge-Kutta
scheme made efficient by use of vectorization, a
variable time-step, and a flux-based multigrid
scheme, which are all described. A stability
analysis is presented for the two-stage scheme.
Results for a flat-plate model problem show the
applicability of the method to axial, radial, and
rotating geometries. Results for a centrifugal
impelier and a radial diffuser show that the
quasi-three-dimensional viscous analysis can be a
practical design tool.

Introduction

Turbomachinery intended to produce large
amounts of power from a small volume often require
use of radial-flow or mixed-flow components, that
is, components in which the streamwise velocity
is not strictly axial. Radial-flow turbomachines
such as centrifugal impellers, radial diffusers,
and radial-inflow turbines have a predominantly
radial flow direction. Mixed-flow turbomachines
may be used when restrictions on space prevent a
completely radial flow. Complicated geometries,
shock waves, and viscous phenomena make analysis
of radial- or mixed-flow turbomachines more dif-
ficult than analysis of strictly axial-flow
machines.

Analysis of axial-flow turbomachinery blade
rows is usually simplified by modelling a blade
section as a flat cascade. The governing equa-
tions for a flat cascade are the same two-
dimensional flow equations that are solved for
isolated airfoils, so cascade analyses often draw
heavily on numerical techniques developed for
two-dimensional external flows. Examp]is of flat
cascade ana]yies include panel @eﬁhods, poten-
tial methods,¢ Euler solutions,?s™ and Navier-
Stokes solutions.>»

Flows in radial- or mixed-flow turbomachines
are inherently three-dimensional, requiring speci-
fication of the axial, radial, and tangential
velocity components to fully specify the flow. A
simplification that allows these machines to be
analyzed in two gimensions was proposed by
C.H. Wu in 1952.7 1In Wu's model the flow is
assumed to follow an axisymmetric stream surface
(Wu's "S2 surface," Fig. 1). The radius and
thickness of the stream surface are assumed to be
knownas functions of the streamwise distance.
These quantities are usually obtained from an
axisymmetric through-flow or "meridional™

analysis,8 som&times coupled with a boundary
layer analysis® on the hub and shroud.

The equations governing the flow along the
stream surface combine the axial- and radial-
velocity components into one streamwise component,
and are thus two-dimensional. The solution can be
resolved into three velocity components since the
shape of the surface is known. Specifying the
stream-surface thickness allows variable blade
heights and end wall displacement thicknesses to
be modelled. This is similar to specifying area
change in the one-dimensional nozzle equations.
Since the effects of radius change and stream-
surface thickness are modelled in this analysis,
it is termed "quasi-three-dimensional." Examples
of quasi-three-dimensifgal turbomachinery analyses
include Einel methods, streig-function 13
methods, potential methods, and Euler methods.

In the present work, the Euler and Navier-
Stokes code developed for flat cascades in Ref. 6
has been extended to a quasi-three-dimensional
analysis. It is thought that this is the first
Navier-Stokes analysis to include the effects of
rotation, radius change, and stream-surfiie thick-
negs. The explicit MacCormack algorithm®™ used
in® has been replaced with an explicit two-stage
Runge-Kutta finite—dlgference algorithm based on
the work of Jameson. Efficiency is achieved
by three means: vectorizatior, use of a variable
time-step, gnd by use of a multigrid scheme devel-
oped b{ Nil® and modified by Johnson and
Chima.l7-19

Governing Equations

The axisymmetric (m,e) coordinate system
used for the quasi-three-dimensional analysis is
shown in Fig. 1. Here the m-coordinate is
defined by

2 2 2
dm = dz + dr (1)

and the o-coordinate is defined by:
8 =8' ~at (2)

where 8' 1is fixed in space and e rotates

with the blade row with angular velocity 2. The
radius r and the stream surface thickness h
are taken to be known functions of m. In this
coordinate system the dimensionless Navier-Stokes
equations may be written in the following nearly-
conservative form:

1 1

3,0 *+ 3, (F - Re""R) + 3, (6 - Re™°S) =K (3)
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is the relative tangential velocity
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The viscous terms in the energy egquation are:
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a = 1/yp/p is the sonic velocity, and the nor-
malized thermal conductivity k equals one.

The shear stress terms are:

o171 = 2u3mvm +av oV
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and

AV s Vo= _% u vam vy (rm/r + hm/h)+ l/raeve] (6)
is the dilitation.

The equations are nondimensionalized by arbi-
trary reference quantities (here the inlet total
density and critical sonic velocity define the
reference state), and the Reynolds number Re and
the Prandt]l number Pr must be specified in terms
of that state. These egquations assume that the
specific heats Cp and Cy and the Prandtl number
are constant, that Stokes' hypothesis ar = -2/3 4
is valid, and that the effective viscosity may be
written as

L * Mturbulent

H1aminar

Equations (3) to (6) are transformed from the
(m,e) coordinate system to a general body-fitted
(€,n) coordinate system using standard methods.
The thin-layer assumption is then used to elimi-
nate viscous derivitives in the streamwise (g)
direction, thereby reducing computational overhead
while retaining the capability of computing sepa-
rated flows. The resulting equ§8ions are similar
to those developed by Katsanis.
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In Eq. (8) the overbars denote a rescaling
of the metric terms:

- . — . -1 -1
€y = ee/r, ng = ne/r, J 7~ =rhd (9)
where J is the Jacobian of the transformation
J=gn -ng = L (10)
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and the metric quantities are determined from the
grid-point coordinates using central differences
and:

€y = Jen; £q =—Jmn;

(11)

n

m —Jeg; n., = ng

]

The relative contravariant velocity components
W and W' along the & and n grid lines are
given by:

W' = nv +nw (12)

& =
W=t Y gewe’ m m 60

m
The shear stress terms are found from Eq. (6)

by replacing ap with np3, and 1/rag with

g 3«

The quasi-three-dimensional equations
(Egs. (7) to (12)) are similar to the two-
dimensional equations solved in Ref. 6 except for
the source term Ko, the radius appearing in the
g~momentum equation, the rescaled metrics
(Eq. (9)), and the relative velocity component
wg appearing in the contravariant velocities
(Eg. (12)). Equations (7) to (12) reduce to the
two-dimensional equations for constant r and h,
and zero rotation. Note that Egs. (7) to (12) are
independent of the magnitude of the stream surface
thickness h so that any function h{m) > 0 may
be used. The equations do depend on the magnitude
of the radius r because of the 1/r terms scal-
ing g4 and ng in Eq. (9).

For turbulent flows the two-layer eddy-
viscosity model developed by Baldwin and Lomax21
is used. In the (m,0) coordinate system the wall
shear 1, and vorticity w required by the model
are given by

Ty = 0yp g = b <amve * lUrav, - verm/r) W (13)
1 1 + 14
w =5 {3y, = Uragvy + vor/r (14)

Computational Grid

Body-fitted grids for this work were
generated using the GRAPE code (GRids about Air-
foils using Poisson's Equaticn) developed by
Sorenson.22,23 Briefly, the code allows arbi-
trary specification of inner and outer boundary
points, then generates interior points as a solu-
tion to a Poisson equation. Forcing terms in the
Poisson equation are chosen such that desired grid
spacing and intersection angles may be maintained
at the inner and outer boundaries.

New inner and outer boundary subroutines were
written for turbomachine geometries. The new
inner boundary has constant spacing around blade
leading and trailing edges, larger constant spac-
ing over blade surfaces, and exponential stretch-
ing connecting the regions. The new outer
boundary is composed of the mean-camber line
between the blades, a quadratic extension upstream,
and a linear extension downstream, The C(-shaped
grids are periodic over the pitch of the blade.
Grids are generated in a Cartesian (m,Te) coor-
dinate system, where ¥ is some mean radius.
The local radius and stream surface thickness are
supplied to the Navier-Stokes code at a later time
as tabulated functions of m, then spline-fit on
to the grid. The terms ry/r and hp/h in
Egs. (7) and (8) are calculated using central
differences and are stored.

Initial Conditions

Since a centrifugal compressor can produce
pressure ratios of 5:1 or greater it is not gen-
erally possible to start a quasi-three-dimensional
calculation with constant initial conditions.
Instead an analytic solution of the one-dimensional
flow equations with area change is used. Turbo-
machinery blades are usually designed based on
desired leading- and trailing-edge velocity tri-
angles, so the relative flow velocity W and
angle a at the leading edge and the relative
flow angle at the trailing edge are used as input
for the initial conditions.

Using ()' to denote absolute total condi-
tions and ()" to denote relative total condi-
tions, the continuity and energy equations are

m = prhaoW cos a = constant (15)
1=CT -rav, = CT" - 1/2 r%a® = constant
= ¢ o = Cp =
(16)
where a6 s the blade spacing and I 1is the
rothalpy.

Outside of the blade row the angular momentum
equation gives:

rvg = constant (17)

Equations (16) and (17) can be used with the isen-
tropic relations to show that total conditions are
constant outside of the blade row. Evaluating

Eg. (15) at some point ()2 and using Eq. (17)

to eliminate o gives:
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Wy = [~—————+w (18)
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Now the isentropic relations and the defini-
tion of T2" can be used to eliminate P

(19)

where

Substituting Eq. {19) into Eq. (18) gives:

-2
2 V-1

where

‘92—

p2r2h2A9

Equation (20) is solved for w2 at each
grid point upstream of the blade using Newton
iteration. Other flow quantities are then found
using Eq. (17), the known total conditions, and
the isentropic relations.

Withing the blade row rvg # constant, so
Eq. (17) is replaced with an assumption that the
flow angle ap varies linearly through the blade
row. A derivation similar to that above gives:

2
2\v =T
2 fy W -0 (21)

?_CpT2

2
Wo = vy

where

m
‘92= n =
r,h, cos o
P22 2

which is solved at each grid point within the
blade row. Once the flow conditions are known at
the trailing edge, Eq. {20) can be used for the
downstream region.

Boundary Conditions

At the inlet, total pressure, total tempera-
ture, and whirl rvy are specified. For subsonic
inflow the governing equations have one negative
Eigenvalue so that one variable at the inlet must
be computed as part of the solution. Here a char-
acteristic relation is used to extrapolate the
upstream-running Riemann invariant to the inlet.

giving:

The axisymmetric m-momentum equation may be
written as:

- - 2
3R+ (vm - a)amR = (Ve+ avm) ra/v * av, h./h

(22)
where

is the upstream-running Riemann invariant. For
steady axisymmetric flow Eq. (22) may be written
as:

3 R™ = EE» 1 (vz +av.)r/r+av_h/h
L N A U 8 m’ 'm mm

(23)

Equation (23) is backward-differenced and
solved for R™ at the inlet. Then vy is found
from R~ and the specified whirl rvy and total
temperature T' using:

Vm=

(-1 + e - 2vd) - 2(-1) (87

v+ 1)
(24)

Density and energy are found using isentropic
relations.

At the exit the static pressure is specified
and the other flow quantities are found using
first-order extrapolation. Zeroth-order extrapo-
lation is not usually sufficient in cylindrical
coordinate systems because the radius and thus
the velocity may change between grid points. For
the same reason the inlet and exit boundaries
cannot be placed arbitrarily far from the blades.
Too small a radius can cause the flow to be super-
sonic and to large a radius can cause the velocity
to approach zero at the boundaries.

Blade surface pressures are found from the
normal momentum equation:

(25)

where wg = 0 on the surface for viscous flows.

Periodic boundaries are solved like interior
points.

Fine~Grid Algorithm

On the fine grid an explicit two-stage
finite-difference RTnge—Kutta algorithm based on
the work of Jameson'® is used. It is given
below as applied to Eq. (7).



Two-stage Runge-Kutta algorithm

a(l) = an - alAtRn
(26)
4(2) _an (D)
where
a = 1.2
R, =k o+ Lp(F -
i3 i, 2 i1, i-1,]
+ (8 S8 ) —Rre L (8 -5 ]
isj+]- iaj_l i,j"']. iyj_]-
Artificial dissipation
R L (27)
Collect residuals
Aan"']. - an*‘l _ an (28)

The two-stage scheme given by Eq. (26) has a
Courant number limit of one. It is used in pref-
erence to a higher-order scheme with a higher
Courant number 1imit because the multigrid scheme
used here also has a Courant number Timit of one.

Four minor advantages of the Runge-Kutta
scheme over the MacCormack scheme are noted:

1. A steady Runge-Kutta solution is independ-
ent of the time step while a steady MacCormack
solution is not. This is not true when the arti-
ficial dissipation is added in a fractional step
as in Eq. (27).

2. The centrally-differenced Runge-Kutta
scheme produces perfectly symmetric solutions for
symmetric probiems while the one-sided MacCormack
scheme does not.

3. For a two-dimensional problem with
centrally-differenced metrics, the Runge-Kutta
scheme exactly conserves a free stream while the
MacCormack scheme does not. Although the Runge-
Kutta scheme is not fully conservative for the
quasi-three-dimensional problem because of the
source term, it has been found to possess better
conservation properties in general.

4. The Runge-Kutta scheme is slightly easier
to program than the MacCormack scheme.

Differences in.convergence rates between the two
schemes are negligible for Courant numbers near
one.

Artificial Dissipation

Dissipative terms consisting of second and
fourth differences are added to prevent odd-even
point decoupling and to allow shock capturing.
The dissipigive terms are similar to those used
by Jameson'® and others. A one-dimensional
version (g-direction) is given below. In two
dimensions the dissipation is applied as a
sequence of one-dimensional operators.

D = Cluyip ) (29)

ge' %ge T Mal g

where
at 2 2
C=""Z 4"
up = 0(1)
ug = 0(1/16)

The terms in the coefficient C balance
similar terms in Eq. (26). In smooth regions of
the flow the dissipative terms are of third order
and thus do not detract from the formal second-
order accuracy of the fine-grid scheme. 1In
regions of the flow where the second difference
of the pressure is large, the second-difference
dissipation becomes locally of first order. Note
that in other work including Ref. 15 the term
pgg! 1s commonly divided by an average pressure.
This is not done here because pressures through a
centrifugal compressor can increase by factors on
the order of five, which would decrease the
dissipation correspondingly.

Stability Analysis

A stability analysis of the fine-grid algo-
rithm is performed in two parts. The first part
examines the model problem considered by Jamesonl®
and is used here to choose the parameters in the
two-stage scheme. The model problem is the one-
dimensional convection equation with third-order
artificial dissipation:

Gt * ax * usx3gyuxx = 0 (30)

Applying the two stage scheme (Egs. (26) and (27))
gives:

(1) _ n A n
q =q - a]. ? (qJ+1 - qJ~1)
1
0@ 2" -3 (g -0
n+tl (2

)
- uA (qj—2_4qj—1+6qj_4qj+1+qj+2) (31)

0
I

q

where A = at/ax is the Courant number.
If we consider a Fourier component of the
solution

qg = MeTPX el (32)

where V is the amplitude, p is the wave number,
¢ = pax, and i = 4f-1, then the amplification
factor is given by:

Vn+1 ?
g = e [1 - 4ur(1l - cos g)°]

x (1 — i sing - alxz sin2 £)

damping factor x characteristic
polynomial for undamped scheme.



is chosen such that
1/(16 a).

The damping coefficient
g=0at ¢ =, giving u =

An undamped n-~stage scheme can only be
stable to A =n -1, so 1 is taken to be one
while o] s chosen. Figure 2 shows a plot of
Eq. (33) for several values of a7, with 1 =1
and yu = 1/(16 ). It can be seen that the two-
stage scheme is stable for 0.5 <a] £ 1.7, with

} ~ 1.2 giving the best damping over the range
of frequencies. For a1 = 1.2 and u = 1/(16 1)
it can be shown that the two-stage scheme is
stable for Courant numbers A g 1.1. In general
the two-stage scheme is first-order accurate in
time. It is second-order accurate in time only
if al] =

The second part of the stability analysis
considers the linearized Euler subset of the
governing equations (Eqs. (7) and (8)). A

Von Neumann analysis shows the stability 1limit on
the time step to be:

R L Y R N L

-1
verm/r ]

2aqfley * n)* + (E, * HQ)ZJ

which is implemented as:

at < CFL x [ 1v 1dm + lweld5—+ a'Vd% v &l

vr j/r -1

2aydn® + d§2

+

where

dﬁx = 'Em' + lnm

de‘: IEel + lnel

A spatially-variable time-step at; j
used in the two-stage scheme (Egs. (2 ) 3
to accelerate convergence to steady state.
Equation (34) is used to choose the time step at
each grid point such that the Courant number is
constant, typically CFL = 0.95. Time steps are
calculated based on the initial conditions. They

are stored and not updated during the
calculations.

is
nd (27))

Multigrid Algorithm

The multigrid algorithm originated by Nil6
and modified by Johnson and Chima is used to
accelerate convergence of the fine-grid algorithm.
Ni's scheme is basically a one-step Lax-Wendroff
scheme applied on a coarse grid. Ni used f% to
accelerate his own fine-grid Euler scheme.

Johnson adapted Ni's method to other f19e gr1d

schemes including MacCormack's scheme.

also used it for viscous flows by demonstrat1ng
that dissipative terms need not be included on

the coarse grids. Thus the multigrid scheme used
here is based solely on the Euler equations. It
is entirely independent of the viscous terms, the
turbulence model, and the artificial dissipation
used on the fine grid.

One~step Lax-Wendroff schemes including Ni's
scheme require temporal derivatives of the flux
vectors. These terms are computed as the Jacobian
matrix of the flux vector times the temporal dif-
ference of the solution vector. Johnson replaced
these lengthy computations with a direct temporal
difference of the flux vector Ufgng the old and
new solutions on the fine grid. This "flux
based" scheme is considerably simpler than Ni's
original scheme.

The flux-based multigrid scheme if derived
by expanding the fine-grid change aq" *,
(Eq. (28)), in a Taylor series.

an+2 antl ant+l

AQ = AQ + at(aq )t + O(Atz)

The Euler equations are used to replace the third
term.
(a8, = Lat® - F, - &)1, (35)

Interchanging the space and time derivatives and
using backward differencing in time gives:

ant ~ ~ ~
(28" 1)t = at(R, - Fy, - 8

antl  an, ,an*l an antl an
(K - K)-(F - -(G

and finally
AT LA At[AR - (). - (Aa)n]”+1 (36)
where

an+l

AK n+l)

K(q - ﬁ(qn), etc.

Equation (36) is implemented on a coarse grid
with spac1 f lAE, and lAn, and time step

lAt . , using:
Aan+2 _ %_ 3[Aa *aty (LaR - oF - Aa)]i+1,j+u
+ [Aa *oaty g (ak - ofF + Aﬁ)]i+l,j_£
+ [Aa oty (1aR + aF - Aé)]i—a,j+z
+ [AG Aty (Lak + oF + Aé)]i—u,j-u%
. (37)

Fine-grid changes 43"l are restricted to
the coarse grid by injection. The multigrid algo-
rithy (Eq. (37)) computes coarse-grid corrections
a§"*¢ based on changes in the fine-grid solution.
Thus the coarse-grid corrections must vanish if
the fine-grid solution converges, thereby retain-
ing fine~grid accuracy.



The coarse-grid corrections are prolonged
back to the fine grid using bilinear interpolation
and the fine-grid solution is updated. The
process may then be repeated on a coarser grid.

Vectorization

The explicit Runge-Kutta and multigrid algo-
rithms used here have been highly vectorized for
the Cray I-S at NASA Lewis Research Center.
Indeed the Runge-Kutta computations were clocked
at about 40 million floating point operations/sec
(40 mflops) for an Euler solution on a 113 by 25
grid. The efficiency of the multigrid computa-
tions decreases as the grid gets coarser and the
vectors get shorter,

The code was redimensioned for each grid size
run and required 260 K words of memory for the
largest grid (161 by 33). The quasi-three-
dimensional code reguires about 20 per%ent more
storage than the two-dimensional code.

Results

Results are presented for the following
problems: a cascade of thin flat plates with
round leading edges, a centrifugal impeller, and
a vaned-radial diffuser. Both Euler and Navier-
Stokes results are presented.

To aid in developing the quasi-three-
dimensional code and to illustrate the capabili-
ties of the analysis, a model problem was devel-
oped representing a cascade of thin flat plates
with round leading edges. The plate has unit
chord, four percent thickness, and a pitch of 0.7.
Figure 3 shows the computaticnal grid around the
plate. The inviscid flow grid had 113 by 25
points with 5° spacing around the leading edge
circle and a normal spacing of 1.8x107%." The
viscous flow grid had 1%3 by 33 points with a
normal spacing of 5x107°. The grid shown in
Fig. 3, and most of the subsequent grid and con-
tour plots in this paper, are drawn in a trans-
formed plane in which the abscissa is .s dm/r
and the ordinate is ¢. This transformation
preserves angles and is discussed in Ref. 10.

Grids are generated in an (m,7o) coordinate
system where v 1is some mean radius, and are
independent of the local radius r and stream-
surface thickness h. Values of r and h are
supplied to the quasi-three-dimensional code later

and can be varied to simulate different geometries.

A flat cascade was simulated by setting
r = constant and h = constant. Figure 4 shows
static pressure contours for an Euler solution
with an inlet Mach number of 0.33. (Titles on
the figures give nominal values of Mach number,
Reynolds number, and flow angle based on the
leading-edge velocity triangles given as input.
Actual inlet conditions may change as the solution
develops.) The contours show the stagnation
region and a mild acceleration due to blockage.
Identical results were obtained using the two-
dimensional code.® The solution was run 5000
cycles with two multigrid levels and took 165 sec
on the Cray. The residuals were reduced eight
decades so the solution could have been stopped at
about 2000 cycles with a three-decade reduction
in the residuals.

A radial duct with constant cross-sectional
area was simulated by setting r = m and
r x h = constant. The solution is identical to
the flat cascade results shown in Fig. 4.

A radial diffuser with 36 blades was simu-
lated by setting r =m and h = constant.
Figure 5 shows static pressure contours for an
Euler solution with an inlet Mach number of 0.38
and an exit Mach number of 0.27. The plot is
shown in polar coordinates. The contours show the
diffusion of the flow due to the area change. The
solution was run 2500 cycles with two multigrid
levels and took 92 sec on the Cray. The residuals
were reduced 6 decades so the solution could have
been stopped at about 1250 cycles with a three-
decade reduction in the residuals.

A centrifugal impeller with 36 blades was
simulated by setting r =m, h = constant, and a
rotation rate of 1000 rad/sec {9550 rpm).

Figure 6 shows Mach number contours for a tur-
bulent solution with an inlet Mach number of 0.5
and an exit Mach number of 0.41. The impeller
produces a total pressure ratio of 1.05. The
plot is shown in polar coordinates with rotation
upwards. The inlet whirl is zero but because of
the rotation the inlet relative flow angle is
10.6°. This incidence desymmetrizes the flow and
produces a pressure loading on the blade. At the
exit this loading conflicts with the specified
exit pressure and is responsible for the kinks in
the contours there.

Figure 7 shows convergence histories for the
previous example with various levels of multigrid.
Convergence is taken to be a ghree decade drop in
the maximum residual to 2x1072. For this example
two grids are 1.64 times faster than the fine grid
and three grias are 3.12 times faster than the
fine grid. CPU times are included on the figure.

The remaining results are for a nominally 6:1
total-pressure ratio centrifugal impeller and a
matching vaned-radial diffuser. These components
were designed by the Air Force for use in an
auxilliary power unit and were modified and tested
at NASA Lewis Research Center. The compressor
has a diameter of 16.1 cm. It has 19 blades and
was designed for a total pressure ratio of 5.9:1
with a mass flow of 1.033 kg/sec at 68 384 rpm.
The diffuser has 27 blades and a diameter of
25.1 cm. Further details concerning the compon-
ents can be be found in Ref. 25.

Figure 8 shows the computational grid used for
the impeller. The grid has 161 by 33 point& (161
by 17 shown) with a normal s%acing of 3x107" cm
for inviscid flows and 5x107° cm for viscous
flows. The leading edge is round with a radius of
0.045 cm and the grid points are 7° apart.

Figure 9 shows normalized radius (RMSP = r),
stream-surface thickness (BESP = h), and their
product {(R*B = rh) versus fraction of impeller
chord. These values were taken from a meridional
analysis.

Euler and Navier-Stokes solutions were each
run 2000 cycles with two multigrid levels, reduc-
ing the maximum residual three decades. The Euler
solution took 117 sec and the Navier-Stokes
solution took 185 sec on the Cray.



Surface static pressure distributions for the
impeller are compared in Fig. 10. Three solutions
with identical mass flows are shown: an Euler
solution (dashed), a Navier-Stokes so]ufaon
(solid), and a panel solutior (circles, V). The
Euler and Navier-Stokes solutions were run with
various exit pressures until the desired mass flow
was obtained. The shapes of the three pressure
distributions are similar but the panel solution
has higher pressure levels since it is loss-free.
The Euler solution has strong shock losses which
lower the pressure levels. The Navier-Stokes
solution has weaker shocks due to viscous smooth-
ing of the leading edge, but blockage effects
decrease the pressure levels overall.

Figure 11 shows relative Mach number contours
for the Euler solution. The dashed line is the
sonic line. At the inlet the relative Mach number
is 0.91. At the leading edge the flow has 10° of
incidence. This produces a large supersonic
bubble with a peak Mach number of 1.92 on the
suction (upper) surface. The bubble terminates
with a normal shock that is smeared due to grid
shearing in this region. There is also a tiny
supersonic bubble on the pressure (lower) surface
which is not visible at this scale.

Some interesting flow phenomena evident in
Fig. 11 can be explained by the concept of a
relative eddy. The flow through an impeller is
predominantly inviscid and tends to remain irrota-
tional. The blade row in Fig. 11 is rotating
downward and so adds clockwise vorticity to the
flow. To remain irrotational the flow develops a
counterclockwise circulation within the passage.
Thus the flow can be modelled as a superposition
of a through-flow component and a component rotat-
ing counter to the blade row called a relative
eddy. The effect of the relative eddy is to
accelerate the flow on the suction surface and
decelerate the flow on the pressure surface as
can be seen in Fig. 11.

A more dramatic effect of the relative eddy
is to sweep the unconfined flow beyond the trail-
ing edge up and away from the blade in a spiral,
with a slip line leaving the trailing edge. As a
common example of slip from rotating machinery,
consider the flow of water from a lawn sprinkler
as viewed rotating with the sprinkler. The flow
spirals up and opposite to the rotation of the
sprinkler. [t is emphasized that this is strictly
an inviscid phenomena.

Figure 12 shows relative Mach number contours
for a Navier-Stokes solution for the impeller.
Here viscous effects reduce the peak suction-
surface Mach number to 1.72 and the peak pressure-
surface Mach number to just over 1.0. Both
surfaces have small leading-edge separation bub-
bles that are barely resolved on this grid. The
pressure surface quickly develops a thick boundary
layer and the suction-surface boundary layer
thickens after the shock. This blockage causes
the viscous pressure levels to be lower than the
inviscid levels in Fig. 10. The rotation ener-
gizes and diminishes the boundary layers on the
radial portions of the blade.

Here again the relative eddy sweeps the flow
off the trailing edge in a spiral. Since the fiow
does not follow the grid lines the thin-layer
assumption may be invalid and diffusion across the

wake may not be properly accounted for. This is
one shortcoming of the present analysis. However,
since the trailing-edge s1ip is an inviscid
phenomena it is felt that the character of the
solution is correct.

Figure 13 shows the computational grid for
the radial diffuser vane. The grid has 145 by 33
points 5145 by 17 shown) with a normal sgacing of
2.5x107" cm for inviscid flows and 6x107° cm for
viscous flows. The round leading edge has a
radius of 0.025 cm and the grid points are 7°
apart. At the trailing edge the actual vane is
cut off at constant radius and the duct turns
axially. For this analysis the trailing edge was
sharpened and the duct was extended radially.

Figure 14 shows the normalized radius and
stream-surface thickness versus fraction of vane
chord. These values were taken from a combined
meridional/boundary-layer ana]ysis.8’ Although
the vanes have constant height, boundary layer
blockage decreases the flow area by nearly
50 percent.,

An Euler solution was run 4000 cycles with
two multigrid levels, taking 214 sec on the Cray.
A Navier-Stokes solution was run 2000 cycles with
three multigrid levels, takirg 179 sec. In each
case the maximum residual was reduced three
decades.

Surface static pressure distributions for the
diffuser vane are compared in Fig. 15. Again,
panel, Euler, and Navier-Stokes solutions are com-
pared. The shapes of the pressure distributions
are similar but the panel solution has higher
pressure levels since it is loss-free. The Euler
and Navier-Stokes solutions each have small super-
sonic bubbles terminated by normal shocks near the
leading edge, and the Tosses lower the pressure
levels. Additional blockage effects cause the
viscous pressure levels to be even lower than the
inviscid levels.

Figure 16 shows Mach number contours for the
Euler solution. The inlet Mach number is exactly
1.0 but the radial component is only 0.29 so the
flow is subsonic in character. Because of the
increasing radius the total Mach number drops to
about 0.83 near the leading edge. The flow has a
slight positive incidence at the leading edge and
the flow accelerates to a peak Mach number of about
1.5 on the suction surface. The tiny supersonic
bubble (visible only as a black dot at this scale)
terminates with a shock at atout 0.26 percent
chord. The pressure surface develops an even
smaller supersonic bubble. The diffusion through
tne passage is evident in Fig. 16.

Figure 17 shows Mach number contours for the
Navier-Stokes solution. Here viscous effects at
the leading edge entirely suppress the formation
of supersonic bubbles. The thick boundary layers
that aevelop in the diffuser are obvious, but the
flow remains attached on both surfaces.

Concluding Remarks

A quasi-three-dimensional Euler and Navier-
Stokes analysis technigue has been deveioped for
blade-to-blade flows in turbomachinery. The
analysis solves the thin-layer Navier-Stokes



equations written in general coordinates for an
axisymmetric stream surface, and accounts for the
effects of blade-row rotation, radius change, and
stream-surface thickness. It is believed that
this is the first Navier-Stokes analysis to
include these effects.

The solution technique is a two-stage Runge-
Kutta scheme based on the work of Jameson. Effi-
ciency is achieved through use of vectorization,
a spatially-variable time-step, and a multigrid
scheme based on Johnson's revisions of Ni's
scheme. The multigrid scheme typically reduces
the CPU time required by the fine grid scheme
alone by a factor of about three, for both
inviscid and viscous flows.

Results for a model problem show the analysis
to be viable for a variety of axial, radial, and
rotating geometries. Results for a centrifugal
impeller and a radial diffuser vane show that the
analysis can predict a number of phenomena that
are not accounted for in previous analyses. These
phenomena include: leading-edge stagnation
points, leading-edge separation, supersonic
regions and shocks, blade-surface boundary layer
growth, and trailing-edge slip lines.

It is thought that the ability to predict
these phenomena rapidly for general geometries
could make the quasi-three-dimensional analysis a
useful tool for turbomachinery design. Further-
more the quasi-three-dimensional analysis can
provide insight into both physical and numerical
problems that can be expected with fully three-
dimensional problems in the future.
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ROTATION

Figure 1. - Ouasi-three-dimensional stream surface and coordinate
system for a centrifugal compressor,

1

FACTOR
=

.0

0.5 AMPLIFICATION

H=1/(16N

< L 1 {
©90.0 1.6 FREQUENCY 3.1

Figure 2, - Amplification factor for two-stage Runge-Kutta scheme.
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STATIONARY RADIAL DIFFUSERs R=Ms H=1s INVISCID FLOW
MACH  0.348 RE 0., ALPHA 0.00 ITER 2500
PSA/POIN ABS MIN 0.800 MAX 0,990 INC 0,010

Figure 5. - Static pressure contours for inviscid radial diffuser model.
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Figure 6. - Mach number contours for turbulent centrifugal impeller
model.




STATIONARY RADIAL DIFFUSERs R=Ms H=1s INVISCID FLOW
MACH  0.3%8 RE 0. ALPHA 0.00 ITER 2500
PSA/POIN ABS MIN 0,800 MAX 0,990 INC 0,010

Figure 5. - Static pressure contours for inviscid radial diffuser model.

CENTRIFUGAL MPELLERs R=Ms H=ls TURBULENT FLOW
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MACH REL MIN 0.000 MAX 0,700 NG 0,020

Figure 6. - Mach number contours for turbulent centrifugal impeller
model.
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Figure 10. - Static pressure distribution for 6:1 centrifugal impeller.



651 CENTRIFUGAL COMPRESSORs INVISCID
MACH 0. 94% RE 0. ALPHA 63.62 ITER 2000
MACH REL MIN 0,100 MAX 1,900 INC 0. 100

Figure 11, - Mach number contours for inviscid flow in 6:1 centrifugal
impeller,
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Figure 12, - Mach number contours for turbulent flow in 6:1 centrifugal
impelier.
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Figure 13, - Computational grid for 6:1 pressure ratio radial diffuser.
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Figure 16. - Mach number contours for inviscid flow in 6:1 radial diffuser,
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Figure 17. - Mach number contours for turbulent flow in 6:1 radial
diffuser.
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